

Technische Universität München Lehrstuhl für Kommunikationsnetze Prof. Dr.-Ing. W. Kellerer

5G - Requirements from M2M / Smart Grid

Mikhail Vilgelm

mikhail.vilgelm@tum.de

Wolfgang Kellerer

wolfgang.kellerer@tum.de

Content

- Machine-to-Machine
- Smart Grid
 - Scenarios
 - Requirements
- Research @LKN

Machine-to-Machine Communication

Data-only subscriptions

no voice service required

Enhanced coverage

indoor and basement installations

Release 13

Wide range of performance requirements

from utility meters to automotive

Low cost devices

<10\$ per modem

Release 13

Larger amount of devices

orders of magnitude higher than conventional devices

Release 13

up to 10 years

Longer battery life

Release 12

Release 13

Smart Grid: Scenarios

Smart Grid: Scenarios

Smart Grid: Scenarios

Smart Grid: Requirements

Wide Area Monitoring,
Protection and Control

Microgrid Management

Control of Distributed Power Generation

Advanced Metering Infrastructure

Demand Side Management

Electrical Vehicle Charging

E2E Latency	Reliability	Datarate	Installation
5-20ms	99.999%	100 Mbps	Indoor & Outdoor
50ms	99.99%	2 Mbps	Indoor & Outdoor
50-500ms	99.99%	50-200 kbps per site	Indoor & Outdoor
1s	99%	10 kbps per site	Indoor / Basements
1min	99%	100 kbps per site	Indoor / Basement
500ms	99.5%	9.6-56 kbps per site	Indoor & Outdoor

^[2] Siemens Whitepaper, Smart Communications for Smart Grid

^[3] Cheng et al, Feasibility Study of Applying LTE to Smart Grid, IEEE SmartGridComm 2011

^[4] Patel et al, Assessing Communications Technology Options for Smart Grid Applications, IEEE SmartGridComm 2011

Smart Grid: Requirements

Wide Area Monitoring,
Protection and Control

Microgrid Management

Control of Distributed Power Generation

Advanced Metering Infrastructure

Demand Side Management

Electrical Vehicle Charging

E2E Latency	Reliability	Datarate	Installation	
5-20ms	99.999%	100 Mbps	Indoor & Outdoor	
50ms	99.99%	2 Mbps	Indoor Outdo	Power nsumption
50-500ms	99.99%	50-200 kbps per site	Indoor & Outdoor	nsumption
1s	99%	10 kbps per site	Indoo Basements	of devices
1min	99%	100 kbps per site	Indoo LO Basem	w mobility
500ms	99.5%	9.6-56 kbps per site	Indoor & Outdoor	

^[2] Siemens Whitepaper, Smart Communications for Smart Grid

^[3] Cheng et al, Feasibility Study of Applying LTE to Smart Grid, IEEE SmartGridComm 2011

^[4] Patel et al, Assessing Communications Technology Options for Smart Grid Applications, IEEE SmartGridComm 2011

Research @LKN

Applicability to SmartGrid: LTE and Beyond

- Distribution Grid / Radio Access Network
- How scalable is LTE:
 - Amount of devices to be accommodated in one cell without violating the requirements
 - C-plane
- LTE performance evaluation:
 - Latency
 - Reliability
 - U-plane
- Coexistence of H2H and M2M traffic:
 - with/without differentiation
 - QoS degradation in a loaded cell
- Data aggregation using 802.15.4g standard (Smart Utility Networks)
 - Coverage extension
 - Radio resource saving

Neighborhood Area Network Scenario

Control of Distributed Power
Generation

Advanced Metering Infrastructure

Demand Side Management

Electrical Vehicle Charging

References

- [1] White Paper on Optimizing LTE for the IoT, Nokia, 2014
- [2] Siemens Whitepaper, Smart Communications for Smart Grid
- [3] Cheng et al, Feasibility Study of Applying LTE to Smart Grid, IEEE SmartGridComm 2011
- [4] Patel et al, Assessing Communications Technology Options for Smart Grid Applications, IEEE SmartGridComm 2011