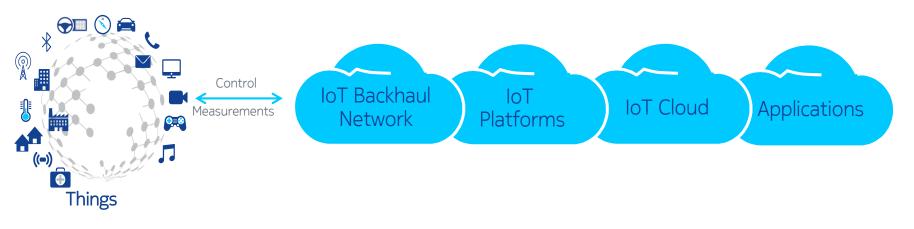
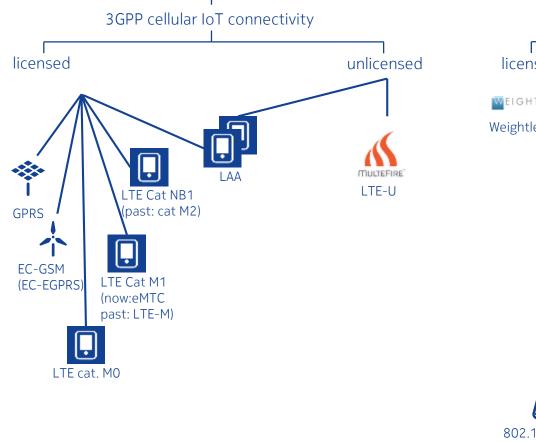
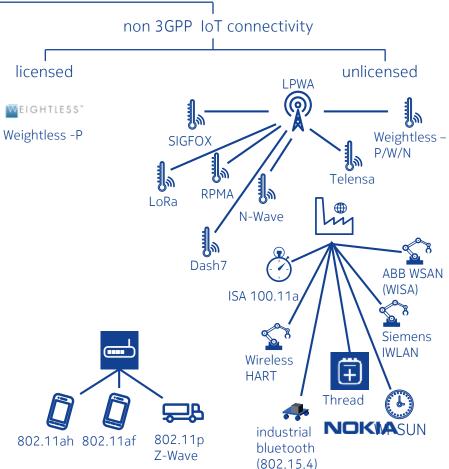

IoT radio access technologies

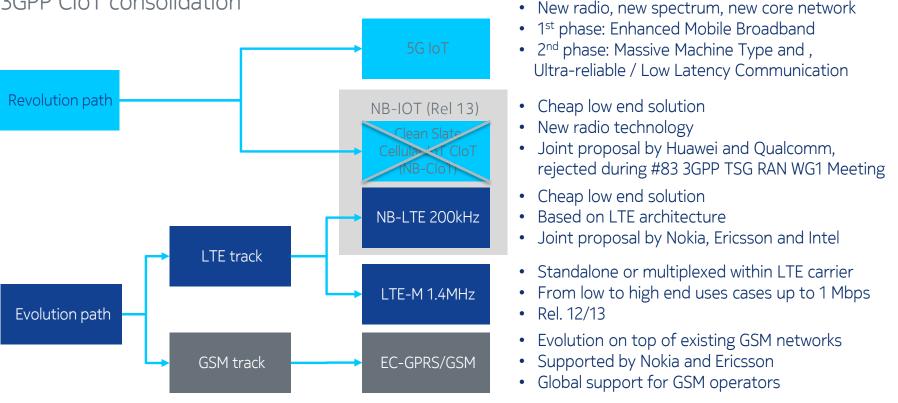
ITG 5.2.4 Workshop "Cellular Internet of Things"


Dr. Berthold Panzner München 2017-12-01

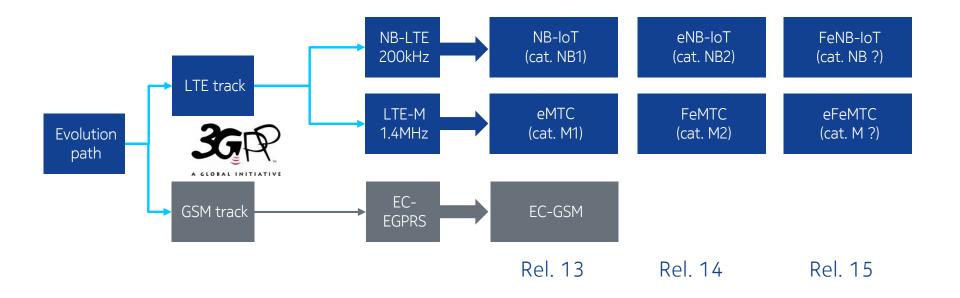
Internet of Things E2E IoT Connectivity



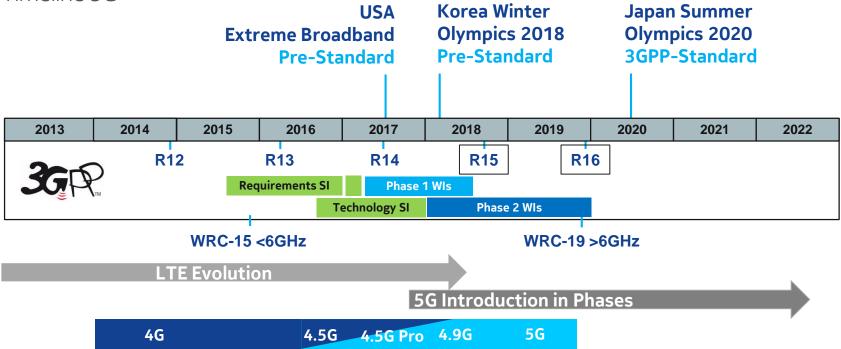

Internet of Things E2E IoT chain


Sensors & Actuators	Connectivity	Platform	Analytics	Application
Sense and React	Wired and Wireless	Connectivity Management, Applications APIs	Insights, correlations, smart decision	A unified end to end solution

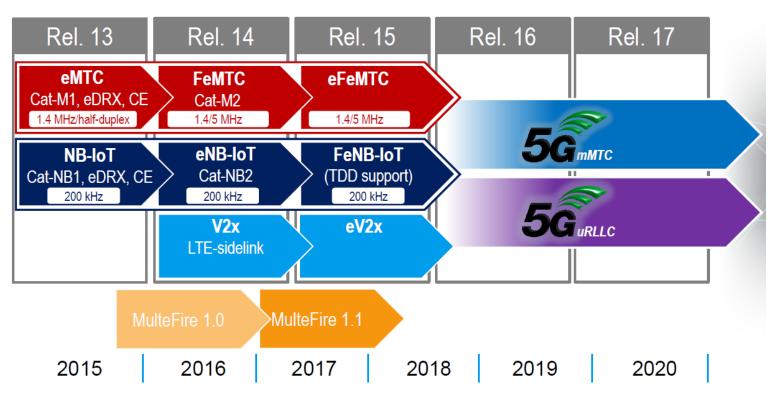
A myriad of IoT Connectivity Solutions



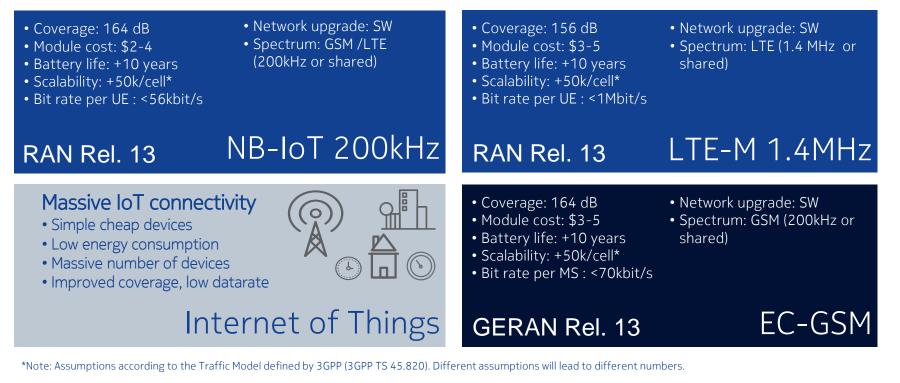
Cellular IoT Connectivity Solutions 3GPP CIoT consolidation



Cellular IoT Connectivity Solutions 3GPP CIoT consolidation

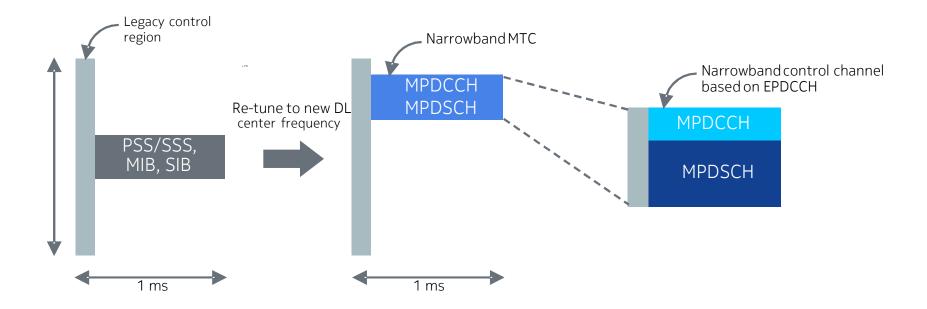


3GPP Standardization Roadmap


Timeline 5G

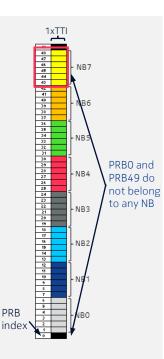
3GPP Standardization Roadmap Timeline CloT

3GPP Rel. 13 CloT Radio Technology Space



LTE-based IoT radio solutions

		Release 8		Release 12		Release	13	
Modem/device chip category		Category 4	Category 1	Category 0	Category M1 (eMTC)		Category NB1 (NB-IoT)	
Peak data rate	Downlink	150 Mbps	10 Mbps	1 Mbps	1 Mbps		170 kbps	
instantaneous	Uplink	50 Mbps	5 Mbps	1 Mbps	1 Mbps		250 kbps	
Peak data rate	Downlink	150 Mbps	10 Mbps	1 Mbps	890 kbps	300 kbps	26 kbps	
sustained	sustained Uplink		5 Mbps	1 Mbps	1 Mbps 375 kbps		62kbps	
Duplex mode		Full duplex	Full duplex	Half duplex (opt)	Full duplex Half duplex		Half duplex	
Number of antennas		2	2	1	1		1	
UE receive bandwidth	1	20 MHz	20 MHz	20 MHz	1.4 MHz		200 kHz	
UE transmit power		23 dBm	23 dBm	23 dBm	20/23 dBm		20/23 dBm	
Multiplexed within LTI	Multiplexed within LTE		Yes	Yes	Yes	3	Yes/No	
Modem complexity		100%	80%	40%	20%	6	<15%	


Multiplexing LTE-M with legacy LTE

LTE-M NB in DL frame

LTE-M multiplexed with legacy LTE carrier

50PRBs (10MHz) are divided by 3GPP into 8 possible narrowbands (NB0-NB7)

NB (Narrow Band): new logical entity in LTE-M (6PRBs)

At one time only one NB is used by CAT-M UE in DL

NB index for DL transmissions

3GPP allows for different NB for MTC DL control and data channels (including different NB for Paging/SIB transmission).

CAT-M UE is instructed which NB should be used in SIBs (information about the NB index of MTC control channel) as well as in DCI - Downlink Control Information (NB used for UL and DL data transmission)

LTE-M NB in UL frame

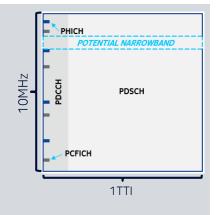
NB index for UL transmissions

 \rightarrow NB6 for UL data transmissions

CAT-M UE is instructed which NB should be used in UL via DCI that carries UL grant

LTE-M Redesign of physical channels

•


The need of physical channels redesign was addressed by 3GPP specification Some of legacy LTE physical channels i.e. PDCCH, PCFICH, PHICH are not possible to be correctly decoded by CAT-M UEs. This is a consequence of their supported bandwidth (1.4 MHz)

As a consequence, functions of missing channels are provided by:

- MPDCCH which replaces PDCCH and PHICH for CAT-M UEs*
- PCFICH replacement is not needed (MPDCCH size is fixed)

CAT-M1 UE is able to fully read DL channels like PBCH, Primary Synchronization Signal (PSS) and Secondary Sychronization Signal (SSS) as they fall into a 6PRB bandwidth supported by CAT-M1 UE.

*Note: HARQ feedback after UL transmission is not provided. Instead, eNB informs about the need of retransmission via proper NDI (New Data Indicator)

LTE-M Redesign of downlink physical channels

	LTE	Short description	LTE-M	Short description
	PDCCH	First 1-4 OFDM symbols of each TTI. Used for DCI carrying	MPDCCH*	All PDSCH resources (REs) within NB7 (6PRBs) can be reused for MPDCCH
Some of legacy	PCFICH	Indicates the number of OFDM symbols used by PDCCH. PCFICH is located within the first OFDM symbol of each TTI	N/A	No equivalent in LTE-M. MPDCCH size is fixed
downlink	PHICH	Used to carry HARQ feedbacks of UL transmissions. PHICH is located within the first OFDM symbol of each TTI	N/A	No equivalent in LTE-M. MPDCCH is used for carrying of HARQ feedback after UL transmission
physical channels	РВСН	Transmitted with fixed periodicity of 40ms (10ms taking into account repetitions). PBCH carries MIB	MPBCH*	When MIB repetitions are not enabled MPBCH = PBCH, otherwise, PBCH symbols are repeated (each symbols occurs 5 times instead of one). MIB transmitted over PBCH is enhanced with IE that determines if CAT-M UEs are supported by given cell
are reused by LTE-M	PSS/SSS	Used for synchronization aspects. 6 th and 5 th OFDM symbol for PSS/SSS respectively. Transmitted once per 10ms	PSS/SSS	Fully reused by CAT-M UE. CAT-M UE connects to the same LTE cell
	RS	Number of RE designated for carrying of DL Reference Signal is determined by the cells`antenna configuration	RS	Fully reused by CAT-M UE. CAT-M UE connects to the same LTE cell
	PDSCH	All resources (REs) within TTI excluding PDCCH, PCFICH, PHICH, PBCH, PSS, SSS, RS, MPDCCH and MPDSCH (NB7)	MPDSCH*	All RE of configured NB7 that are not used by other physical DL channels/reference signals

*Note: For the simplification, the ,M' prefix is added to all channels when it comes to LTE-M feature description. It does not always mean new channel, but also usage of full or part of the legacy channel resources for CAT-M UE transmission

LTE-M Primary (PSS) and Secondary Synchronization Signal (SSS)

After a switch on, CAT-M1 UE is looking for a cell that it is allowed to be camped on At the beginning, once UE detects cell`s broadcasted PSS/SSS, it has to synchronize itself with the cell which it is trying to connect with

Primary Sychronization Signal (PSS):

- transmitted in 6th OFDM symbol (LTE FDD) in each Radio Frame (SF#0 and #5)
- consists of 62 subcarriers (frequency domain) and one OFDM symbol in time domain

Secondary Sychronization Signal (SSS):

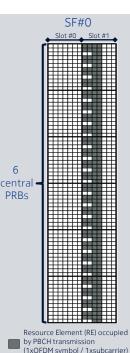
- transmitted in 5th OFDM symbol (LTE FDD) of each Radio Frame (SF#0 and #5)
- consists of 62 subcarriers (frequency domain) and one OFDM symbol in time domain

6 central -PRBs

SF#0 / SF#5

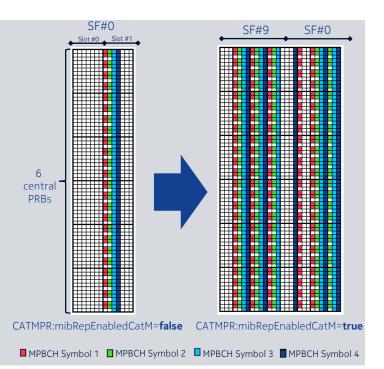
UE relies on the signals decoded from the PSS and SSS, transmitted every 10ms in subframe #5 (SF#5) which are different for each cell. As a result of PSS/SSS decoding, UE is able to obtain, subframe number* and the PCI**.

*Note: UE is synchronized on subframe level (accuracy 5ms) as PSS and SSS are sent in SF#0 and SF#5 (fixed timing) **PCI (Physical Cell ID) of the LTE cell



Once preliminary time synchronization procedure is completed, UE is able to read the MIB encoded in MPBCH UE is looking for a centrally located MPBCH (PBCH). **PBCH carries the MIB (Master Information Block)**, 24bits, that are the main source of the primary information about cell, like bandwidth or System Frame Number

PBCH (6PRBs) is transmitted every 40ms with 4 repetitions, what means that PBCH occurs every 10ms (in subframe #0)



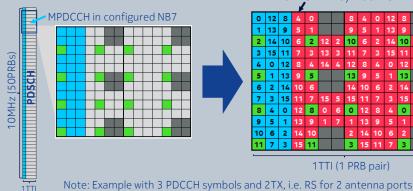
MPBCH detectability can be improved by increasing the number of PBCH repetitions

Number of (M)PBCH copies is configurable

Whenever parameter CATMPR:mibRepEnabledCatM is set to true, each MPBCH symbol occurs fivefold

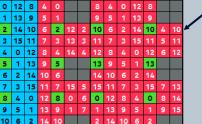
Additional repetitions of MPBCH symbols will appear in SF#9 as well

I TF-M MPDCCH - MTC Physical Downlink Control Channel (1/7)


UL and DL grants for CAT-M UE scheduling are provided via MTC Downlink **Control Channel** (MPDCCH)

MPDCCH is limited to 6 PRBs of NB, what means it is fully decodable by CAT-M1 UE

MPDCCH occupies whole NB and it is located within the legacy downlink data channel (PDSCH)


MPDCCH starting symbol is broadcasted in SIB2-BR*

MPDCCH structure

MPDCCH always starts from OFDM symbol #3

7 3 15 11

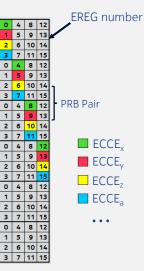
1TTI (1 PRB pair)

3 15 11 7

EREG number (EREG - Enhanced Resource Element Group)

Note: EREG consists of all resource elements within PRB pair that are assigned the same EREG number

RE carrying the PDCCH RE carrying the Cell specific Reference Signal (RS) RE carrying the PDSCH RE carrying the DMRS


RE carrying the PDSCH, reused for MPDCCH

*Note: BR stands for Bandwidth Reduced

LTE-M MPDCCH - MTC Physical Downlink Control Channel (2/7)

UL and DL grants for CAT-M UE scheduling are carried over Enhanced Control Channel Elements (ECCE*) MPDCCH allocations

LTE-M supports distributed allocations only, i.e. four EREGs that create the ECCE* are spread over PRB pairs

EREGs - Logical representation (not identical to physical resource element mapping) LTE-M supports scheduling of **single CAT-M1 UE per TTI**, either in UL or in DL. **24ECCEs**, the highest Aggregation Level defined for MPDCCH by 3GPP is always used for grants allocation

EREG consists of 6REs, hence single CAT-M UE allocation consumes 576 REs (6PRBs). For MPDCCH, always QPSK is used.

*Note: Single ECCE is the smallest MPDCCH allocation unit

LTE-M MPDCCH - MTC Physical Downlink Control Channel (3/7)

Number of MPDCCH repetitions depends on parameterization as well as on the transmitted message type

LTE-M feature provides an opportunity of MPDCCH repetitions

R _{max}	n ₁	n ₂	n ₃	n ₄
32	4	8	16	32
16	2	4	8	16
8	1	2	4	8
4	1	2	4	-
2	1	2	-	-
1	1	-	-	-

Where:

R_{MAX}: CATMPR:mpdcchMaxNumRepCatM I_x: as configured by CATMPR:mpdcchRepLevCatM

CSS Type 1 (Paging, P-RNTI)

R _{max}	n ₁	n ₂	n ₃	n ₄
256	2	16	64	256
128	2	16	64	128
64	2	8	32	64
32	1	4	16	32
16	1	4	8	16
8	1	2	4	8
4	1	2	4	
2	1	2	-	
1	1	-		
Where:				

R_{MAX}: CATMPR:mpdcchMaxNumRep**Pag**CatM n_x: as configured by CATMPR:mpdcchRepLev**Pag**CatM

CSS Type 2 (MSG2, HARQ for MSG3 and MSG4)*

R _{max}	n ₁	n ₂	n ₃	n ₄
32	4	8	16	32
16	2	4	8	16
8	1	2	4	8
4	1	2	4	-
2	1	2	-	-
1	1	-	-	-

Where:

R_{MAX}: CATMPR:mpdcchMaxNumRep**Ra**CatM n_x: as configured by CATMPR:mpdcchRepLev**Ra**CatM

Number of repetitions is at the intersection of row and column. CAT-M UE is informed about the row index (SIB2-BR) and column index (via DCI). Default values indicated by green color

LTE-M MPDCCH - MTC Physical Downlink Control Channel (4/7)

Downlink Control Information (DCI) format determines which search space is needed Two types of Search Spaces are available – Common Search Space (CSS) and UE specific Search Space (USS)

CSS – Common Search Space

- TypeO-MPDCCH CSS is used for power control
- Type1-MPDCCH CSS is used for Paging (P-RNTI)
- Type2-MPDCCH CSS is used for sending DCIs related to RA messages MSG2, HARQ of MSG3, MSG4

USS – UE specific Search Space

USS is used for regular user data allocations (C-RNTI)

CSS and USS are scheduled alternatively


TTI that carries MPDCCH will be designated either for CSS scheduling when any DCI to be carried over the CSS is pending or for USS scheduling, when no more DCIs to be carried over the CSS are in queue

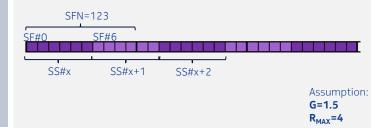
LTE-M MPDCCH - MTC Physical Downlink Control Channel (5/7)

MPDCCH is allocated in valid DL subframes only

Whenever invalid DL SF* is met, MPDCCH is always postponed

NOKIA

Carriage of UL or DL grant and all its repetitions happens within one MPDCCH search space MPDCCH allocation (all repetitions) must fit to single Search Space (SS) boundary**

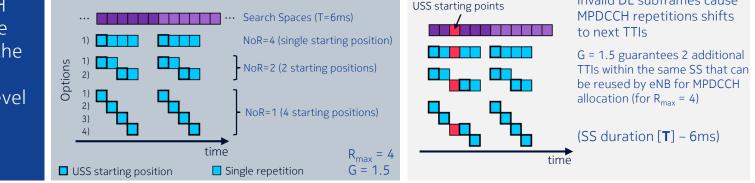

SS duration (**T**) is expressed as **R_{MAX} * G factor** and depends on parameters:

- **R_{MAX}** CATMPR:mpdcchMaxNumRepCatM***
- G factor:
 - USS CATMPR:mpdcchStartSfUessCatM
 - CSS CATMPR:mpdcchStartSfCssCatM

When invalid DL subframes are expected to appear and R_{MAX} for MPDCCH is higher than 1, **G factor should be higher than 1**. When R_{MAX} is set to 1 **then G factor must be set to 1 as well.**

MPDCCH search space starts in each subframe that satisfies the formula:

(10*SFN + subframe number) mod T = 0



LTE-M MPDCCH - MTC Physical Downlink Control Channel (6/7)

Starting positions of DCI transmission in the MPDCCH search space depend on the selected repetition level

Possible USS* starting positions

When configured **number of repetitions is not equal** to R_{max} , there is more than one starting position in which first repetition of DCI can be allocated**.

* Note: CSS starting positions are determined in the analogical way. Note that difference in SS duration may be seen as different G factor can be used (CATMPR:mpdcchStartSfCssCatM). ** Note: When there is a collision between e.g. 1st USS starting position in SS and other channel (MPDSCH), MPDCCH SS will not be always lost. Other positions can be used by eNB.

DCI allocation usually starts from the search space beginning

Possible USS starting positions when invalid DL subframe is met

Invalid DL subframes cause

Invalid DL subframe postpones

MPDCCH repetitions and shifts

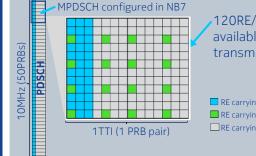
LTE-M MPDCCH - MTC Physical Downlink Control Channel (7/7)

eNB sends Downlink Control Information messages for the CAT-M UE over the MPDCCH

DCI carries information about UL or DL data transmission aspects

CI formats supported by LTE-M are summarized in the table below

ULRegular Data6-0AUSSN/AC-RNTIDLRegular Data6-1AUSSN/AC-RNTIDLRAR6-1ACSS2RA-RNTIDLPaging6-2CSS1P-RNTI	UL/DL	Purpose	DCI format	Search Space	CSS Type	RNTI
Data Data OSS N/A C-RNTI	UL	-	6-0A	USS	N/A	C-RNTI
	DL	-	6-1A	USS	N/A	C-RNTI
DL Paging 6-2 CSS 1 P-RNTI	DL	RAR	6-1A	CSS	2	RA-RNTI
	DL	Paging	6-2	CSS	1	P-RNTI


LTE-M MPDSCH - MTC Physical Downlink Shared Channel (1/2)

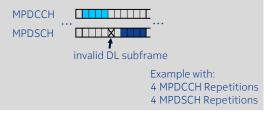
Transport blocks with user data are sent over the MPDSCH channel

MPDSCH is transmitted on selected legacy PDSCH resources (as limited by NB7)

MPDSCH structure

MPDSCH consists of all Resource Elements of NB7 that are not used for any other DL transmission

1TTI


120RE/PRB pair/TTI are available for MPDSCH transmission

RE carrying the PDCCH
 RE carrying the Cell specific Reference Signal (RS)
 RE carrying the PDSCH that can be reused for MPDSCH

Note: Example with 3 PDCCH symbols and 2TX, i.e. RS for 2 antenna ports

MPDCCH as well as MPDSCH occupy the whole NB7 therefore only one of them is transmitted at one TTI

MPDSCH is always preceded by grant allocation on MPDCCH. Between MPDCCH and MPDSCH there is a break of one DL valid SF

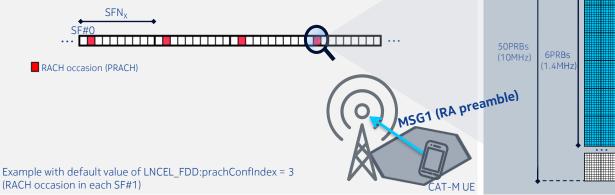
LTE-M MPDSCH - MTC Physical Downlink Shared Channel (2/2)

	Number of MPDSCH repetitions depends on parameterization as well as on the transmitted message type															
LTE-M gives	Transmission scheduled in DL by DCI 6-1A (scrambled with C-RNTI or RA-RNTI)						Transmi	ssion	schec	luled	by DC	16-24	A (Pag	ing, P	-RNTI)	
an								R _{max}	n ₁	n ₂	n ₃	n ₄	n ₅	n ₆	n ₇	n ₈
opportunity		R _{max}	n ₁	n ₂	n ₃	n ₄		n2	4	8	16	32	N/A	N/A	N/A	N/A
to enable		32	1	4	16 8	32		n1	1	2	4	8	16	32	N/A	N/A
MPDSCH		8	1	2	4	8		Where:								
repetitions	Where: R _{MAX} : CATMPR:pdschMaxNumRep ModeA CatM n _x : as configured by CATMPR:pdschRepLev ModeA CatM*							where: R _{MAX} : value same time n _x : as confi	the MP	DSCH r	epetitic	on set			nines at	the

Number of repetitions is at the intersection of row and column. CAT-M UE is informed about the row index (SIB2-BR) and column index (via DCI). Default values indicated by green color

LTE-M Redesign of uplink physical channels

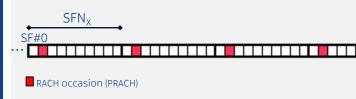
	LTE	Short description	LTE-M	Short description
Some of legacy uplink	PRACH	6 contiguous PRBs. Starting PRB is defined by offset (LNCEL_FDD:prachFreqOff) or, if LTE1130 is activated, the appropriate offset is automatically being found (. Frequency of RACH opportunity is as defined by LNCEL_FDD:prachConfIndex	MPRACH*	MPRACH = PRACH (the same PRBs will be reused). The only difference can appear in timing. It is possible to limit MPRACH occasions in which initial MSG1 transmission can happen (CATMCEL:prachStartsSFCatM). Please note that repetitions can happen in each PRACH occasion
physical channels are reused by LTE-M	PUCCH	Whenever LTE1130 is used, PUCCH size is automatically being adjusted based on number of connected UEs. If LTE1130 is not used, required PUCCH size has to be calculated and configured accordingly	MPUCCH*	MPUCCH always occupies 2 PRBs from the legacy PUCCH. Single configuration for 2 MPUCCH PRBs - one PRB is for SR and the second is for HARQ feedbacks. Please note that LTE1130 is a prerequisite for LTE3128 activation thus the size of the legacy PUCCH can vary
	PUSCH	All resources unused for PRACH/PUCCH/MPUCCH/MPUSCH are designated for UL data transmissions over PUSCH	MPUSCH*	All resources unused for all other UL channels and limited to NB6 create MPUSCH


*Note: For the simplification, the ,M' prefix is added to all channels when it comes to LTE-M feature description. It does not always mean new channel, but also usage of full or part of the legacy channel resources for CAT-M UE transmission

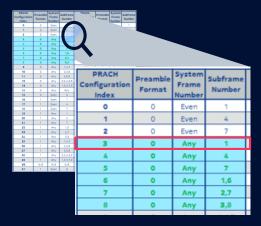
LTE-M MPRACH – MTC Physical Random Access Channel (1/5)

MPRACH will be used by idle CAT-M UE to start RRC connection establishment CAT-M UE sends RA preamble on MTC Physical Random Access Channel (MPRACH)

From the frequency domain perspective, MPRACH fully overlaps with PRACH as the same PRBs will be used by CAT-M UE and non-CAT-M UE for RA preamble sending


reused by CAT-M UEs RACH occasion configured FDD:assignedPrachFreqOf S PRB Starting RACH NCEL

PRACH resources are


LTE-M MPRACH – MTC Physical Random Access Channel (2/5)

Number of PRACH occasions depends on the selected PRACH configuration index Number of PRACH occasions as well as the exact timing is determined by the legacy configuration (LNCEL_FDD:prachConfIndex) that determines in which SFNs and which subframe numbers UE is allowed to send RA preamble

Example with default value of LNCEL_FDD:prachConfIndex = 3 (RACH occasion in each SF#1)

Supported PRACH Configuration Indexes for cells with LTE-M feature enabled \rightarrow 3-8*

Number of PRACH occurences as well as exact PRACH timing is determined based on LNCEL_FDD:prachConfIndex

*Note: LTE-M supports Preamble format 0 only.

LTE-M MPRACH – MTC Physical Random Access Channel (3/5)

Some of PRACH occasions (or all) are also MPRACH occasions MPRACH timing (MPRACH occasions) CAT-M UE is allowed CATMCEL:prachStartSFCatM determines the MPRACH occasion periodicity to use PRACH occasion PRACH occasion that is also MPRACH occasion** PRACH **MPRACH Periodicity 10ms*:** ... CATMCEL:prachStartSFCatM=0 occasions for MSG1 **MPRACH Periodicity 20ms*:** CATMCEL:prachStartSFCatM=2 sending With CATMCEL:prachStartsSFCatM=2, every 2nd PRACH occasion will be also a MPRACH occasion CAT-M UE can transmit initial RA preamble (i.e. the 1st repetition of RA preamble)

only in MPRACH occasions

LTE-M MPRACH – MTC Physical Random Access Channel (4/5)

	Number of repetitions of each RA preamble attempt is configurable by CATMPR:numRepPerPreambAttemptCECatM						
CAT-M UE can	MPRACH repetitions always follow the initial RA preamblePRACH occasion PRACH (MPRACH) occasionMSG1 of CAT-M (initial transmission) MSG1 of CAT-M (repetition)						
transmit one RA	MPRACH Periodicity 10ms: CATMCEL:prachStartSFCatM=0						
preamble	MPRACH Repetitions: 1 ··· CATMPR:numRepPerPreambAttemptCECatM = 1 ···						
with repetitions	MPRACH Repetitions: 2* ··· CATMPR:numRepPerPreambAttemptCECatM = 2** ···						
	Whenever CATMPR:numRepPerPreambAttemptCECatM is greater than one, the same preamble (MSG1) will be sent over configured number of MPRACH occasions. eNB will						

combine the energy from multiple subframes to detect the initial UE message

LTE-M MPRACH – MTC Physical Random Access Channel (5/5)

MPRACH occasions are reserved for the initial preambles sent by CAT-M UEs When MSG1 of CAT-M (initial transmission) PRACH occasion MPRACH repetitions always MSG1 of CAT-M (repetition) CATMCEL: PRACH (MPRACH) occasion follow the initial RA preamble prachStartSF CatM > 0repetitions **MPRACH Periodicity 20ms:** can be sent in CATMCEL:prachStartSFCatM=2* non MPRACH **MPRACH Repetitions: 1** CATMPR:numRepPerPreambAttemptCECatM = 1 occasions **MPRACH Repetitions: 2** only CATMPR:numRepPerPreambAttemptCECatM = 2

LTE-M MPUCCH - UL control channel (1/2)

MPUCCH will be used by CAT-M UEs to provide a HARQ feedback after DL transmission as well as to request resources via Scheduling Request (SR)

 0
 PUCCH

 4
 PUCCH

 4
 MBUCCH

 4
 MBUCCH

 4
 MBUCCH

 4
 MBUCCH

 3
 NB6

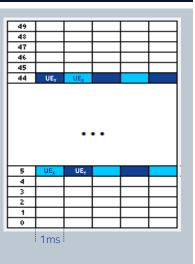
 33

 35

 36

 31

- PRACH

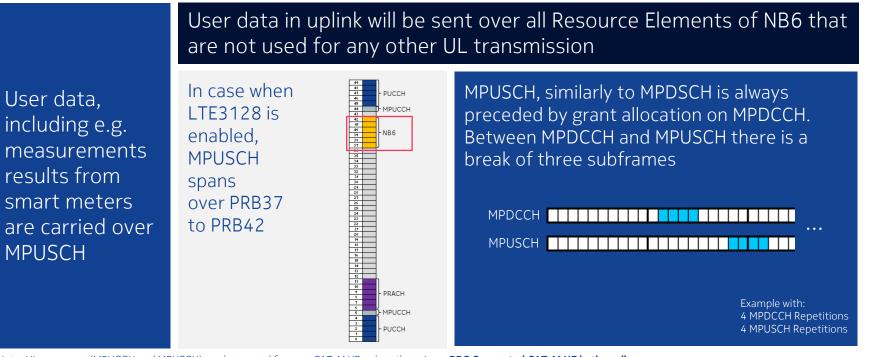

- PUCCH

- MPUCCH

There are two main use cases for MTC Uplink Control Channel (MPUCCH) MPUCCH reuses 2 outer PRBs from legacy PUSCH that stick to the legacy PUCCH*

Note: PRACH is permanently moved beyond the MPUCCH by LTE1130 MPUCCH hopping is supported

MPUCCH hops every single subframe what will result in diversity gain



LTE-M MPUCCH - UL control channel (2/2)

LTE-M gives an opportunity	 MPUCCH can be sent by UE with repetitions. Number of repetitions depends on parameters (CATMPR:pucchF1NumRepModeACatM** and CATMPR:pucchNumRepMsg4ModeACatM for repetitions of HARQ feedback in response to the MSG4) 	Whenever MPUCCH resources are not used for CAT-M UEs, they can be reused for legacy PUSCH transmissions*
to enable MPUCCH repetitions	Supported MPUCCH Uplink Control Information formats are format 1 for SR and format 1a for ACK/NACK	ACK/NACK will be scheduled with BPSK while SR with on/off keying

LTE-M MPUSCH - UL data channel (1/2)

Note: UL resources (MPUCCH and MPUSCH) can be reused for non-CAT-M UEs when there is no RRC Connected CAT-M UE in the cell

LTE-M MPUSCH - UL data channel (2/2)

LTE-M gives an opportunity to enable MPUSCH repetitions

Number of MPUSCH repetitions depends on parameterization

UL transmission scheduled by DCI 6-0A (C-RNTI) and transmission of MSG3 (scheduled with RA-RNTI)

R _{max}	n ₁	n ₂	n ₃	n ₄
32	1	4	16	32
16	1	4	8	16
8	1	2	4	8

Where:

R_{MAX}: CATMPR:puschMaxNumRep**ModeA**CatM n_x: as configured by CATMPR:puschRepLev**ModeA**CatM

Number of repetitions is at the intersection of row and column. CAT-M UE is informed about the row index (SIB2-BR) and column index (via DCI). Default values indicated by green color

NOKIA

LTE-M coverage enhancement (CE)

Many MTC devices are expected to be located indoors

Coverage enhancement techniques are expected to improve the signal penetration into buildings

LTE-M feature offers the possibility of **enabling of multi subframe repetitions**, resulting in higher energy per information bit

CE modes defined by 3GPP

CE mode A

CE mode A provides relatively modest coverage enhancement. **Maximum Coupling Loss (MCL) is expected to be improved about at least 5dB.** Smaller, comparing to CE mode B, number of repetitions is allowed to be used.

CE mode B

CE mode B is expected to improve the MCL about ~15dB, as a result of much more extensive repetition (up to 2048 repetitions)

NoR*=1			1	m	5
NoR*=2					

*Note: NoR stands for Number of Repetitions

LTE-M CE: repetition in LTE-M

Idea of repetition is similar to HARQ retransmission The major difference between repetition and HARQ retransmission is related to the necessity of sending

Repetition

Configured number of repetitions are always mandatorily sent

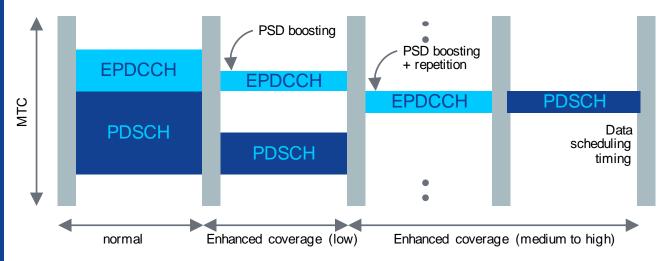
Note: Repetitions can be retransmitted as well

HARQ Retransmission

HARQ retransmission is done only when needed. Whenever the latest (re)transmission is not acknowledged, HARQ retransmission will take place (provided that maximum number of HARQ retransmissions is not reached)

Both HARQ retransmissions and repetitions are characterized by different RV (Redundancy Versions). RV sequence {0,2,3,1} defined by 3GPP for LTE is kept for LTE-M as well

Please note that preserving 3GPP wording, **repetition means both the initial transmission (1st repetition) as well as additional 'copies'**. When single repetition is to be used, only an initial transmission is sent. In turn, when 4 repetitions are configured, initial transmission + 3 'copies' are sent.


LTE-M Absolution repetition number in Physical Channels

	Physical channel	3GPP CE Mode-A limit
Maximum	MPUSCH	32
	MPUCCH	8
repetition of Physical Channels	MPRACH	128 (the same as for CEModeB)
	MPDSCH	32
	MPDSCH for Paging	2048 (the same as for CEModeB)
	MPDCCH for USS/RA CSS	256 (the same as for CEModeB)
	MPDCCH for Paging	256 (the same as for CEModeB)

LTE-M Absolution repetition number in Physical Channels

Extended coverage – 155.7 dB path loss Coverage extended via repetition and power spectral density boosting

LTE-M Acquiring information about cell support for CAT-M UEs

The next step after the cell selection and preliminary synchronization is MIB reading from MPBCH CAT-M1 UE, comparing to legacy LTE will pay attention to schedulingInfoSIB1-BR*-r13 Information Element

MIB CONTENT**					
Information Element/ Group name	Need	3GPP-Range	Source		
dl-Bandwidth	MP	Enumerated: (n6, n15, n25, n50, n75, n100)	eNB		
schedulingInfoSIB1-BR-r13 Information Element	MP	INTEGER (031)	eNB		

Whenever schedulingInfoSIB1-BR-r13 value is higher than 0, CAT-M UE support is enabled in given cell

schedulingInfoSIB1-BR-r13 value found in MIB is additionally used by CAT-M UE to determine:

- 1) repetition level of SIB1-BR* transmissions
- 2) TBS (Transport Block Size) for SIB1-BR* transmission

*Note: BR stands for Bandwidth Reduced

LTE-M Acquiring configuration of SIB1-BR broadcast

schedulingIn foSIB1-BRr13 value Whenever LNCEL:actCatM is set to enabled, value of schedulingInfoSIB1-BR-r13 broadcasted in PBCH is determined based on configured the number of SIB1-BR repetitions (CATMPR:numRepSib1BRCatM) as well as SIB1-BR Transport Block Size (TBS)

The eNB determines the TBS for SIB1-BR by selection of the smallest one from the set {208, 256, 328, 504, 712, 936} which is equal to or larger than the SIB1-BR message size

Value of MIB-> <i>schedulingInfoSI</i> <i>B1-BR-r13</i>	numRepSib1BR CatM	SIB1-BR TBS
1	4	208
2	8	208
3	16	208
4	4	256
5	8	256
6	16	256
7	4	328
8	8	328
9	16	328
10	4	504
11	8	504
12	16	504
13	4	712
14	8	712
15	16	712
16	4	936
17	8	936
18	16	936

LTE-M SIB1-BR provides further details about the cell configuration

Once MIB is decoded, CAT-M UE will read SIB1-BR, containing i.a. configuration of other SIBs, PLMN and Tracking Area Code

SIB1-BR in frequency domain

SIB1-BR has no fixed location in the frequency domain, i.e. frequency hopping in the shape of NB hopping is possible. 2 narrowbands are selected based on the PCI and used alternatively.

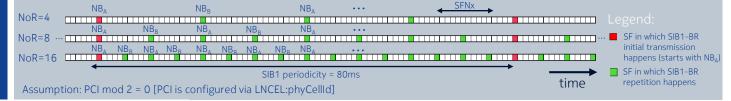
SIB1-BR in time domain

SIB1-BR together with all repetitions are transmitted over the MPDSCH in 80ms period. Number of SIB1-BR repetitions (NoR) over 80ms is configured by CATMPR:numRepSib1BRCatM*. System Frame Number (SFN) and Subframe numbers, in which SIB1-BR transmission will happen, depend on the configured NoR as well as on the PCI.

3 4	NB5 NB6		NBO NB1	
5	NB7		NB2	
NoR	PCI mod 2		FN od 2	SF#
4	0	(0	4
4	1		1	4

NB0

NB1


NB2

NB5

NB6

NB7

4	1	1	4
8	0	0, 1	4
0	1	0, 1	9
16	0	0, 1	4, 9
10	1	0, 1	0, 9

LTE-M System Information provisioning (1/3)

	LTE-M supports also SIB2-BR, SIB3-BR, SIB4-BR and SIB16-BR			
Information about other SIB(s) scheduling is included in SIB1-BR	SIB	Purpose		
	SIB1-BR	Carries basic information about the serving cell, e.g. PLMN, Tracking Area Code, Min. RX level needed to access the cell, cell barring information, information about other SIB configuration in time domain.		
	SIB2-BR	Contains radio resource configuration information that is common for all CAT-M UEs, e.g. (M)PRACH, UL power control configuration, Timing alignment configuration, etc.		
	SIB3-BR	Carries information common for cell re-selection (intra-frequency, inter-frequency, inter-RAT), e.g. power and quality thresholds.		
	SIB4-BR	Provides information about the intra-frequency neighbouring cells relevant for cell re-selection.		
	SIB16-BR	Carries GPS related information		

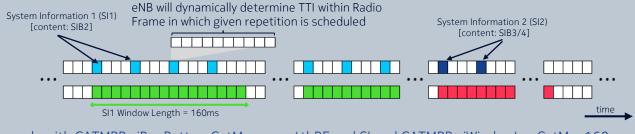
LTE-M System Information provisioning (2/3)

Periodicity of other SIB messages depends directly on the periodicity of SI windows SIBs other than SIB1 are assigned dedicated SI (System Information) windows that will not overlap

System Information Messages (SIM) broadcast

Periodicity of SI windows for SIBs are configurable via following parameters CATMPR:sib2PeriodicityCatM, CATMPR:sib3sib4PeriodicityCatM, CATMPR:sib16PeriodicityCatM)

SIx window length is common for all SIBs and possible to be configured via CATMPR:siWindowLenCatM parameter value (160ms by default)


time

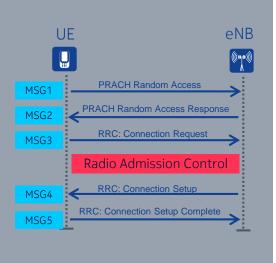
LTE-M System Information provisioning (3/3)

Repetitions of SI messages for CAT-M UEs improving the detectability of SIM are also in scope of LTE-M Number of SIB repetitions (common for all SIBs other than SIB1-BR) is controlled via CATMPR:siRepPatternCatM parameter value

System Information Messages (SIM) broadcast

SIB transmission (including all repetitions) have to fit to the SI window (SIW) boundaries. CATMPR:siRepPatternCatM determines the periodicity of SIB repetitions within SIW. As a result exact number of repetitions depends on SIW length and CATMPR:siRepPatternCatM parameter value. Combination of them determine radio frames within SIW that will contain SIB repetition.

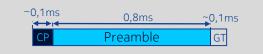
Example with CATMPR:siRepPatternCatM = every4thRF and SI and CATMPR:siWindowLenCatM = 160ms



Random Access Procedure in LTE-M (1/4)

Random Access (RA) procedure will precede any data transmission to/from the idle UE Before any transmission happens, Idle CAT-M1 UE has to establish the RRC Connection

Everything starts with the RA procedure during which CAT-M UE randomly selects one preamble and sends it over the MPRACH (MSG1)

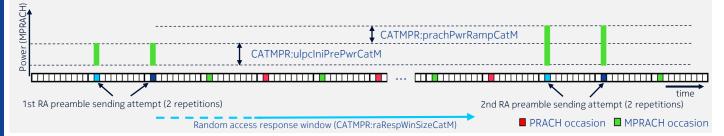


LTE-M1 provides support for contention based random access only

LTE-M Random Access Procedure in LTE-M (2/4)

RA procedure is started with the initial UE message (MSG1) that contains the RA preamble LTE-M provided by LTE3128 supports **PRACH preamble format 0 only**. PRACH config indexes which can be used in the cell where LTE-M is activated are limited (3-8).

When LTE3128 is used, 64 preambles are split into 4 groups, including a **new**, **separate group** for CAT-M UEs. Each group contains a configurable number of preambles



LTE-M Random Access Procedure in LTE-M (3/4)

CAT-M1 UE has multiple attempts of one RA preamble sending, as configured by CATMPR:pream bTxMaxCatM* The first RA preamble transmission attempt is done with the initial UL power (CATMPR:ulpcIniPrePwrCatM) Once all repetitions of RA preamble are sent by CAT-M UE, PDCCH is being monitored. CAT-M UE is looking for the RA-RNTI indicating the RAR, i.e. the Random Access Response (MSG2) If RAR is not received during so called **Random access response window** (CATMPR:raRespWinSizeCatM), CAT-M UE starts the next attempt of RA preamble increasing the power

A stepwise power boosting is the next method that improves the RACH preamble detectability

One RA preamble attempt is always transmitted with the same power

LTE-M Random Access Procedure in LTE-M (4/4)

As many CAT-M1 UEs compete for the limited number of RA preambles, it can happen that more than one select the same Zadoff-Chu sequence in the same MPRACH occasion

UE1 eNB UE2 Preamble X randomly selected Random Access Preamble (X MSG1 RAR window Random Access Response (RA-RNTI) MSG2 Temporary C-RNTI, TA*, UL grant RRC: Connection Request (PRBs Y-Z) MSG3 Contention Resolution (CR) UE Identity: A for UE1 and B for UE2 RA CR + RRC Connection Setup MSG4 RRC Connection Setup Complete MSG5 Assumption: Random Access Preamble from UE1 is lost

The same RA preamble detection by eNB will lead to assignment of the same temporary C-RNTI as well as the same resources where MSG3 will be allocated by the CAT-M UE

After MSG3 sending CAT-M UE expects to receive MSG4 within the time limited by Contention Resolution timer (CATMPR:raContResoTmrCatM)

When CAT-M UE detects its identity in MSG4, it will confirm MSG3 correct reception by ACK. Otherwise it sends nothing (DTX) what will lead to Contention Resolution timer expiry (RA failure)

*Note: TA stands for Timing Advance

LTE-M Radio Admission Control (RAC)

Radio Admission Control controls number of simultaneous RRC_Connected UEs, Active UEs as well as the number of established DRBs

RAC role is to control availability of radio resources Connected CAT-M UE can have **up to 3 nonGBR DRBs (QCIs 6-9) established** (including default bearer).

CAT-M UE is counted as legacy LTE UE as well. That means that RAC takes connected CAT-M UE into account while legacy LTE thresholds are being checked as well

CAT-M UE will not be admitted by Radio Admission Control, regardless of which threshold is reached first, i.e. either CATMPR:maxNumRrcCatM or MPUCCH_FDD:maxNumRrc or LNCEL_FDD:maxNumActDrb or LNCEL_FDD:maxNumActUe

Total number of ...

Number of connected CAT-M UEs as configured by CATMPR:maxNumRrcCatM

Minimum number of Cat-M RRC connections as configured by CATMPR:minNumRrcCatM to grant cell access for Cat-M UEs(Airscale SM)

eMTC vs. FeMTC vs. eFeMTC Rel. 13 \rightarrow Rel.14 \rightarrow Rel. 15 Improvements

Mobility

Intra-frequency and inter-frequency measurements in enhanced coverage mode

PHY/MAC layer enhancements

- Max uplink TBS of 2984 bits (M1)
- new UE category (M2) with max TBS of 4008/6968 bits (UL/DL) and optionally support of 5 MHz
- 10 DL HARQ processes

Group Messaging

Adoption of Rel.13 single Cell point-to-Multipoint (SC-PTM) feature

Device positioning

- E-CID support
- OTDOA support based on positioning reference signal (PRS) adapted for LTE-M (e.g. frequency hopping support)

VoLTE improvements

optimized parameter for VoLTE

- reduce DL repetitions
- new repetition factors in CE
- adjusted scheduling delays

- Latency and power consumption reduction
- Higher velocity (e.g. 200 km/h)
- Lower UE power class
- Improved spectral efficiency (e.g. 64 QAM)
- Load control improvements

expected in Rel. 15

NOKIA

