Chair of Communication Networks 'I'I.I'I'I

Department of Electrical and Computer Engineering
Technical University of Munich

Firewall offloading based on SDN and NFV

ITG 5.2.2/5.2.4 05.12.2016

i

—

e
L T
(1 ey .

Raphael Durner @ | @ \
Uy @'
M | |

r.durner@tum.de }
i |
Ne———]) 1 L - jr/—»"—)\r\/

e
. 4‘ R
l i L]

g S

—

— S W TN A == i —

©2016 Technical University of Munich

Overview

= [ntroduction
= Motivation
= Main security requirements
= Network Function Virtualization
= State of the Art
= SDN & NFV Architecture
= Offloading Approach
= ByteLim Logic
= Conclusion and open Questions

Motivation TUm

Software Defined Networking:
Central control improves programmability and makes innovations easier

Network Function Virtualization:
Run Network Functions on Commodity Hardware and in the cloud

v Reduce costs
v" Use available resources flexible

— How can we guarantee a certain security level in these environments?
— How can security related network functions be virtualized?

Main Security Requirements

= |solation of services
= Authentication and Authorization of devices/users/services
= |solation of flows
—> Stateless firewalling

= Stateful Firewalling

= Check states of protocols
» e.qg. TCP, SIP

= Normalization
» e.g. filter non-standard DNS replys, filter html

Stateless < Stateful < Application Layer

State of the Art Firewalls

Internal
External —p —p Net 2 g
Network y ¢ e
Client

 Firewall Resides on the Networks' Edge
 Control Plane (State) and Forwarding Plane not decoupled

SDN and NFV Network Security Architecture

Private Cloud

External

Network

Client

Client Client

No distinct edge of the network
-> Firewall has to filter ,everywhere”
-> Higher Load on Firewalls

- Potentially higher security

Offloading Approach TUT

Combine NFV and SDN —
= Traffic steering with SDN Feee . Sy
= Some parts of the Network function with __ i TN~
SDN =

= Some parts offloaded to NE (l |
- More Complex g g
+ leverages benefits of both approaches

Client Client

Example TCP:

1. Connection Setup using VNF

2. Established connection using
Hardware

Building Blocks

Offloading

VNF [Logic

* VNF signals connection state to Logic
* Logic decides for Offloading Flow

« Command to SDN Controller

SDN
Controller

—>

Data
Plane

« SDN Controller installs necessary rules in Hardware

Challenges TUT

* Flow setup in switch
Can cause duplicates, packet loss and (short time) connection
interruption

= Lack of Hardware
Current OpenFlow switches handle header rewrite in software — very low

throughput

= Offloading Decision:
Flow classification algorithms needed

Which Flows can be offloaded and what are the gains?

Challenges

Which Flows can be offloaded and what are the gains?
—->What limits the usage of Offloading?

= Flow capactiy in the hardware
* Flow Setup Rate
= Delay from decision to active Offloading

10

Constraint: Delay in the complete system

VNF

TCP handshake
finished

Total Delay

Logic

ﬂ\

v

Controller

tv

Switch

\‘ﬁ tp

t v

r_

Flow handeled in
Hardware

11

Building Blocks Realisation

:) SDN | Data
VNF Logic Controller Plane
Realisation
: ovs/
IpTables — Logic . RyuSDN PICA/
(Python) Controller NEC

Tt 1

Conntrack REST OpenFlow

12

Total Delays

Results: 200

= ~ 100 ms for OVS & NEC 180 -

Implications:

= Not feasible for short lived
flows like DNS

= Delay > RTT

—> Effects on TCP algorithm

Time through VNF in ms

40 -

20

60

NEC

13

Effects of Logic on Performance

VNF

= Which Flow metrics must be estimated by the Oracle?

Logic

>

1

Oracle

SDN
Controller

—>

Data
Plane

= (Gain i.e. cost of flow through VNF proportional to packet count

=» Offload Flows with many Packets

Bytelimit Logic

* Logic decides based on Flowsize
= Flows above a threshold are offloaded

= Oracle predicts Flowsize based on used application

Mathematical Description:
f(x): PDF of flow size

x: Flow size

P(x): PDF of Packets

P(x>=f(x>*x=jf<x)-xdx

discrete
— P = F . X

15

Bytelimit Logic

Example: Negative Exponentially distributed Flowsize

Share of Flows f(x

)

0.05 0.02
0.045 ff 0018}
1
1
0.04 | 0016
1
i
0035} | 0.014
0 I\‘ Tu:
Z 0o03f | £ o012
B \ o
w \ g
500251 |\ = 0.01
0 \ o
@ \ o
& 002f @ 0.008
&
0.015} 0.006 |
0.01} 0.004
0.005 | \\\ 0.002
T
T—
0 I s . L L 0
0o 1 2 3 4 5 8 78 o 10

Flow Size in MByte

Share of Packets P(x)

4 5 &
Flow Size in MByte

P(x>=f(x>*x=ff<x>-xdx

discrete
e— P

F-X

10

16

Bytelimit Logic TUTI

Simulation vs Theory 45 2108
= Trendline similar N Siimiation
4t eory
= Very big flows are hard to
. 3.5
simulate
a1k
£ 25
a 2f

1.5F

0.5 Hj

0 0.5 1 15 2 25 3 3.5 4
Flowsize in Byte 10

17

Bytelimit Logic TUTI

s
|
|

Simulation vs Theory —
= Trendline similar
= Offset between simulation

Theoretica
Simulation

o
w

<
w
T

<
~J
T

and theory i
= Very big flows are hard to %..
=
simulate 9

<
W
T

0.2

01

| L 1 1 1 l
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Byte Limit[MByte]

18

Conclusion and Open Questions

= Basic building blocks for offloading developed

= Bytlim logic shows promising results
= Difference between simulation and theory should be evaluated

Open:

= How to predict Bytesize?
= Simple classification by {source IP, Port}

19

