Chair of Communication Networks Department of Electrical and Computer Engineering Technical University of Munich

Firewall offloading based on SDN and NFV

ITG 5.2.2/5.2.4 05.12.2016

Raphael Durner

r.durner@tum.de

Overview

ТШП

Introduction

- Motivation
- Main security requirements
- Network Function Virtualization
 - State of the Art
 - SDN & NFV Architecture
- Offloading Approach
 - ByteLim Logic
- Conclusion and open Questions

Motivation

Software Defined Networking:

Central control improves programmability and makes innovations easier

Network Function Virtualization:

Run Network Functions on Commodity Hardware and in the cloud

- ✓ Reduce costs
- ✓ Use available resources flexible

- How can we guarantee a certain security level in these environments?
- → How can security related network functions be virtualized?

Main Security Requirements

- Isolation of services
 - Authentication and Authorization of devices/users/services
 - Isolation of flows
 - → Stateless firewalling
- Stateful Firewalling
 - Check states of protocols
 - e.g. TCP, SIP
 - Normalization
 - > e.g. filter non-standard DNS replys, filter html

Stateless < Stateful < Application Layer

State of the Art Firewalls

- Firewall Resides on the Networks' Edge
- Control Plane (State) and Forwarding Plane not decoupled

SDN and NFV Network Security Architecture

No distinct edge of the network

- → Firewall has to filter "everywhere"
- \rightarrow Higher Load on Firewalls
- \rightarrow Potentially higher security

ТΠ

Offloading Approach

Combine NFV and SDN

- Traffic steering with SDN
- Some parts of the Network function with SDN
- Some parts offloaded to NE
- More Complex
- + leverages benefits of both approaches

Example TCP:

- 1. Connection Setup using VNF
- 2. Established connection using Hardware

Building Blocks

- VNF signals connection state to Logic
- Logic decides for Offloading Flow
- Command to SDN Controller
- SDN Controller installs necessary rules in Hardware

Challenges

ПП

 Flow setup in switch
Can cause duplicates, packet loss and (short time) connection interruption

Lack of Hardware

Current OpenFlow switches handle header rewrite in software – very low throughput

Offloading Decision:

Flow classification algorithms needed

Which Flows can be offloaded and what are the gains?

Which Flows can be offloaded and what are the gains?

\rightarrow What limits the usage of Offloading?

- Flow capacity in the hardware
- Flow Setup Rate
- Delay from decision to active Offloading

Constraint: Delay in the complete system

Building Blocks Realisation

Total Delays

Results:

~ 100 ms for OVS & NEC

Implications:

- Not feasible for short lived flows like DNS
- Delay > RTT
- \rightarrow Effects on TCP algorithm

Effects of Logic on Performance

- Which Flow metrics must be estimated by the Oracle?
- Gain i.e. cost of flow through VNF proportional to packet count

→ Offload Flows with many Packets

Bytelimit Logic

- Logic decides based on Flowsize
 - Flows above a threshold are offloaded
- Oracle predicts Flowsize based on used application

Mathematical Description:

f(x): PDF of flow size x: Flow size P(x): PDF of Packets

$$P(x) = f(x) * x = \int f(x) \cdot x \, dx$$
$$\xrightarrow{discrete}_{====} P = F \cdot X$$

Bytelimit Logic

0.05 0.02 0.045 0.018 0.016 0.04 0.035 0.014 Share of packets 0.012 0.01 800.0 Share of Flows 0.03 0.025 0.02 0.015 0.006 0.01 0.004 0.005 0.002 0 0 0 2 3 4 5 6 7 8 9 10 0 2 3 4 5 6 7 8 9 10 1 1 Flow Size in MByte Flow Size in MByte $P(x) = f(x) * x = \int f(x) \cdot x \, dx$ $\xrightarrow{discrete} \mathbf{P} = \mathbf{F} \cdot X$

Example: Negative Exponentially distributed Flowsize

Share of Flows **f(x)**

Share of Packets P(x)

TUTT

ТШП

Bytelimit Logic

Simulation vs Theory

- Trendline similar
- Very big flows are hard to simulate

ТШП

Bytelimit Logic

Simulation vs Theory

- Trendline similar
- Offset between simulation and theory
- Very big flows are hard to simulate

- Basic building blocks for offloading developed
- Bytlim logic shows promising results
 - Difference between simulation and theory should be evaluated

Open:

- How to predict Bytesize?
 - Simple classification by {source IP, Port}

