

SYSTEM DESIGN FOR 5G CONVERGED NETWORKS

Hans J. Einsiedler, Dirk v. Hugo (T-Labs)

5G: MOBILE (R)EVOLUTION

FROM PHONES TO SMARTPHONES TO SMART-THINGS

WHY WE NEED 5G! SATISFACTION OF FUTURE USE CASES

THE MOST IMPORTANT USE CASE - THE UNKNOWN ONE! WE CANNOT SEE INTO A CRYSTAL BALL!

BUSINESS SCENARIOS AND MODELS CURRENT KNOWN AND DISCUSSED USE CASES ARE THE DRIVERS

- Residential customers home network operation and management
- Mobile customers
- Enterprise
- Machine type communication
- Network federation
- Network sharing Virtual (mobile) network operator
- Frequency sharing (e.g. via licensed shared access)
- Network management, service infrastructure, infrastructure split
- Roaming (local breakout versus home network control)

EVOLUTION OF THE NETWORK INFRASTRUCTURE FROM SILOS OVER MONOLITHS TOWARDS VIRTUAL SILOS

USE CASES MAPPED TO NETWORK SLICES REQUIREMENTS WILL DEFINE THE NETWORK SLICES

RAT= Radio Access Technology; CP = Control Plane; UP= User Plane; AP= Access Point; IoT= Internet of things; D2D = Device to Device

© NGMN

USE CASES MAPPED TO NETWORK SLICES REQUIREMENTS WILL DEFINE THE NETWORK SLICES

RAT= Radio Access Technology; CP = Control Plane; UP= User Plane; AP= Access Point; IoT= Internet of things; D2D = Device to Device

© NGMN

REQUIREMENTS LEADS TO CONTROL PLANE FULL FLEXIBLE SYSTEM CONCEPT

- Control plane functions and protocols will offer the possibility to orchestrate different control planes according to the requirements of the use case and application areas.
- Control plane will be initiated in a distributed infrastructure – not necessarily in a central virtualized environment.
- Modular approach offers the possibility to run different access technologies much easier in the same SDN
 m environment.

NEW CONTROL PLANE CONCEPT INTERFACES AND INTERWORKING

- Backwards compatibility to other systems is not mandatory.
- Novel control plane has different interfaces, towards:
 - other control planes if its profitably,
 - the services and third parties including developers,
 - cloud edge infrastructures,
 - the physical network infrastructure.
 - Control plane orchestration and infrastructure orchestration might be the same system.

SYSTEM CONCEPT LOGICAL C-PLANE CONTROLS THE LOGICAL D-PLANE

EXAMPLE WITH LOW COMPLEXITY STATIC/NOMADIC FIXED AND WIRELESS SENSOR NETWORK

EXAMPLE WITH HIGH COMPLEXITY MULTIMEDIA MOBILE BROADBAND

EXAMPLE WITH HIGH COMPLEXITY MULTIMEDIA MOBILE BROADBAND

CONCLUSION 5G WILL BE PLUG AND PLAY INFRASTRUCTURE

- Paradigm Shift: 5G is about more than a new air interface and it will be access agnostic
- Modular and flexible network architecture: No one-size-fits-all approach
- Virtual networks/network slices depending on use case requirements
- Context awareness will offer the possibility to optimize the infrastructure and the services
- If we agree on a common addressing/ID management and QoS interfaces/resource management for the heterogeneous access technologies within a slice, Fixed-Mobile Convergence will come for free
- → Future telecommunication infrastructure will be
 - software driven,
 - access agnostic,
 - virtualized, and
 - sliced

PARTICIPANTS AND ACKNOWLEDGEMENT JOINED WORK OF INDUSTRY AND ACADEMIA

THANK YOU!

LIFE IS FOR SHARING.