

#### Hardware Design of Spectrum Sensing Nodes for Collaborative Sensing Networks

Václav Valenta, Ahmed Elsokary, Peter Lohmiller, Hermann Schumacher Institute of Electron Devices and Circuits, Ulm vaclav.valenta@ieee.org





#### **Outline**

Motivation

- DFG project overview
  - Collaborative spectrum sensing
  - □ Hardware implementation (RFIC + baseband)
  - Preliminary trials

#### **Motivation**

#### ....you can't manage what you don't measure







| Region       | Utilization in<br>400-470 MHz [%] | Freq. allocation<br>[MHz] | No. of TV<br>channels | No. of "occupied"<br>TV channels | Utilization<br>(Method 1) [%] | Utilization<br>(Method 2) [%] |
|--------------|-----------------------------------|---------------------------|-----------------------|----------------------------------|-------------------------------|-------------------------------|
| Brno         | 19.71                             | 470 - 862                 | 49                    | 20                               | 21.2                          | 40.8                          |
| ESIEE Paris  | 9.83                              | 470 020                   | 4.5                   | 28                               | 44.9                          | 62.2                          |
| Paris Nation | 6.37                              | 4/0-830 45                | 45                    | 23                               | 29.9                          | 51.1                          |

- Low spectrum utilization across licensed bands < 6 GHz</p>
- Fixed spectrum assignment inefficient





\* J. Mitola, Cognitive radio: making software radios more personal, IEEE Personal Communications 1999

**Dynamic Spectrum Access as a solution ??** 

#### ...good idea but

- how to guarantee <u>absolute protection</u> for primary users?
- and <u>effective</u> and <u>fair sharing</u> of resources among secondary users?

#### **Common requirement: Spectrum Awareness**

- Geolocation based databases
- Sensing nodes in user terminals
- Sensing nodes in base station

.... sensing nodes simply everywhere

\* E.S. Sousa, Spectrum sensing in cognitive radio networks: requirements, challenges and design trade-offs," *Comm. Mag.*, 2008 \*\* T. Yucek, H. Arslan, A survey of spectrum sensing algorithms for cognitive radio applications, 2009

## **Current Initiatives**

#### **Towards Collaborative Spectrum Sensing**

Drawbacks of the sensing method:

Slide:



- Single node & inflexible platform
- Noise uncertainty problem, bad performance at low SNR
- No "feature" information (modulation, time slot lengths, etc.)



# Development of a flexible multi-nodal sensing network ....why?

- To mitigate the <u>"hidden node problem</u>" and increase sensing reliability
- Relax HW requirements by means of multiple reception
- Exploitation of <u>cooperation principles</u>



## **DFG Project Summary**

Opportunistic radio spectrum access: Collaborative spectrum sensing using custom RFICs and digital signal processing

#### Three project phases:

Development of highly reconfigurable spectrum sensing platforms (customized RFIC and a flexible baseband DSP)

Follow-up

T0-24

Deployment of multiple spectrum sensing units

<u>Definitions of decision strategies</u>, noise analyses, dynamic threshold optimization (all based on experiments)

http://gepris.dfg.de/gepris/projekt/254393704



## **DFG Project Summary (cont'd)**



http://gepris.dfg.de/gepris/projekt/254393704

#### **Development Phase: RF Front-End**

- <u>Double frequency conversion</u> scheme, with up-conversion to a high IF and down-conversion to 0 IF
- <u>Customized</u> SiGe 0.25  $\mu$ m BiCMOS:C ICs (IHP SG25H3,  $F_T/F_{max} = 110/180$  GHz)
- Off-chip microstrip filter
- IF <u>detection bandwidth is 245.76 MHz</u>
- External local oscillators determine the detected frequency band



#### **Up/Down Conversion Frequency Plan**



#### **Realized RF Front-End**



#### **Development Phase: Digital Baseband**



- FMC150: Dual channel A/D converter, 245.76 MSPS, 14 bits
- ILA: Internal logic analyzer
- VIO: Virtual I/O port
- MATLAB : Data visualization and platform control

### **Trial Sensing Tests**



#### **Trial Sensing Tests (cont'd)**



Observed sensitivity limit -107 dBm

#### **Results - Hardware**

#### FPGA usage

| Component                  | Value     |  |  |
|----------------------------|-----------|--|--|
| Logic slices               | 2137 (5%) |  |  |
| Block RAM (18kb)           | 30 (3%)   |  |  |
| Block RAM (36kb)           | 42 (10%)  |  |  |
| DSP slices                 | 26 (3%)   |  |  |
| Maximum clock<br>frequency | 250 MHz   |  |  |

# Detection parametersParameterValueFFT length4096Detection BW245.76 MHzDetection time(42 + 17 x N<sub>avg</sub>) μsResolution BW60 kHz

- DSP48 slices: Multipliers for twiddle factor multiplication, window function and magnitude evaluation.
- Block RAM: Twiddle factor storage, reordering and feedback shift registers.
- Logic slices: Adders and short length shift registers.

## **Ongoing Efforts**

- Frontend improvments
- Digital IQ mismatch compensation
- Design of different sensing algorithms
- Decision engine integration



\*\* OPINIONS FOR THE FUTURE USE OF THE UHF TV BROADCASTING BAND: THE LAMY REPORT – OUTCOME OF THE PUBLIC CONSULTATION

#### **Summary**

Cooperation principles proven in succesfull resource sharing !



#### Acknowledgements



http://gepris.dfg.de/gepris/projekt/254393704

#### Thank you for your attention !