

TUHH

Utility-based Resource Management in LTE and LTE-Advanced Considering QoE

- 47th meeting of VDE/ITG 5.2.4, Stuttgart, DE, 25th June

Presented by Ming LI

Hamburg University of Technology

Agenda

- Introduction
- Utility functions
- Problem formulation and solution algorithms
 - 1. Traffic shaping, solved Lagrangian method
 - 2. Centralized radio resources scheduling heuristics
- Simulation results
- Conclusion and outlook

Introduction

TUHH

- More than 60% of voice calls and 90% of data traffic take place in indoor environments
- Backhaul of femtocells is bounded to the existing user's broadband (e.g. xDSL)

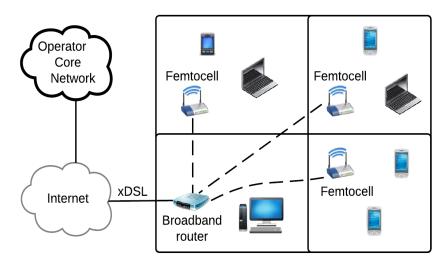
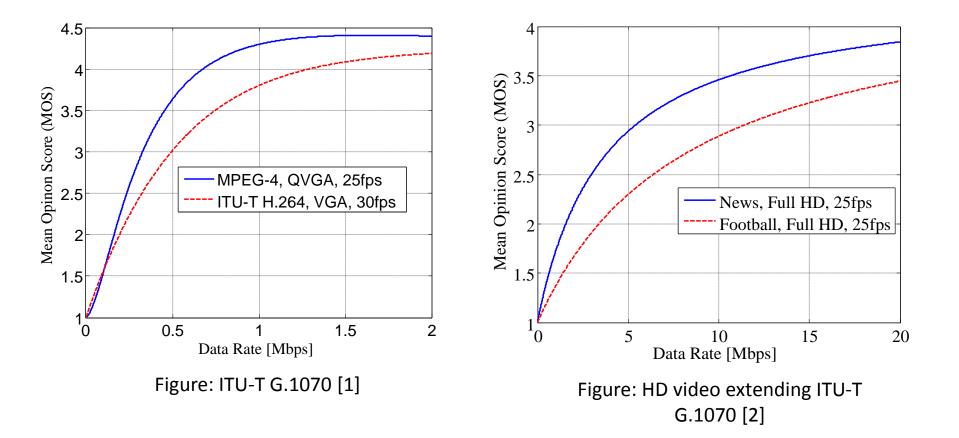
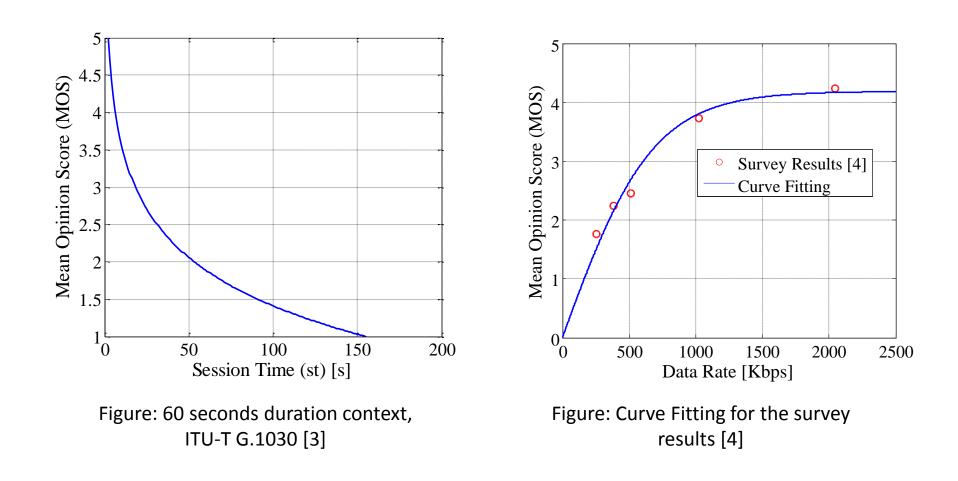


Figure: example of a femtocell cluster

- Traffic shaping can be done at the Core Network per user/bearer level
- The resource allocation can be done for all cells
 - simultaneously in a coordinated manner
 - considers not only the radio resources constraints but also the transport network limitations

Utility-based resource allocation


- Resource Allocation (RRA): the amount of radio resources allocated to different users
 - Make the best use of limited resources under time varying channel conditions
 - Fairness, latency reduction, spectral efficiency and system utilization
- Utility-based Resource Allocation
 - Utility reflects actual users' perceived performance (QoE)
 - Optimization problem: Maximize the aggregated utility, subject to limited resources



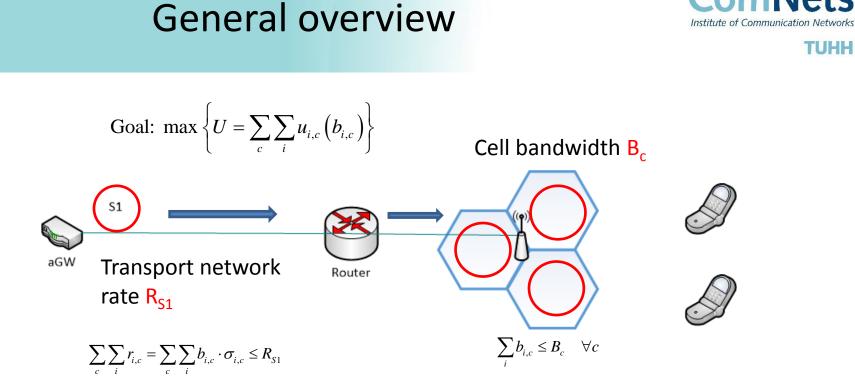
QoE examples for video traffic

QoE examples for Web traffic

ComNets

TUHH

Institute of Communication


Utility functions for nGBR traffics

TUHH

Elastic traffics; Applications Video with transcoding QoE monotonically increases with the data rate; **Properties** Marginal QoE monotonically decreases with the data rate Sigmoid Function **Function Type** (Concave part) $u(r) = \frac{A}{1 + e^{-\alpha \cdot r}} + B = \frac{A}{1 + e^{-\alpha \cdot \sigma \cdot b}} + B$ Utility function $\alpha = 0.3$ Utility Utility $\alpha = 0.5$ $\alpha = 0.7$ curves $\alpha = 0.9$ *with A=9, B=-4.5 0.5 1.5 2 1 Data rate [Mbps]

Case	aGW traffic shaping	Radio scheduler
No S1 bottleneck	-	Optimal algorithm
Only S1 bottleneck	Lagrangian relaxation solved by bisection search	Two heuristics
Both S1 and some cells are bottleneck	Lagrangian relaxation sovled by projected subgradient method	(Centralized/Coordinat ed MAC scheduler)

ComNets

Problem formulation

тинн

• The utility function of the user *i* in cell *c*:

$$u_{i,c}(b_{i,c}) = \frac{A}{1 + e^{-\alpha_{i,c} \cdot \sigma_{i,c} \cdot b_{i,c}}} + B = \frac{A}{2} \left[\tanh\left(\frac{\alpha_{i,c} \cdot \sigma_{i,c} \cdot b_{i,c}}{2}\right) + 1\right] + B$$

• The goal for the resource allocation is to maximize the aggregated utility, which can be expressed as:

$$\max \left\{ U = \sum_{c} \sum_{i} u_{i,c} \left(b_{i,c} \right) \right\}$$

s.t.
$$\sum_{i} b_{i,c} \leq B_{c} \quad \forall c; \quad \sum_{c} \sum_{i} b_{i,c} \cdot \sigma_{i,c} \leq R_{S1}$$

- The problem is convex and has a strong duality, which can be solved optimally using the Lagrangian decomposition method.
 - Hessian matrix positive definite -> Problem is convex
 - Slater's condition fulfilled -> Strong duality holds

Lagrangian dual problem formulation

TUHH

• The Lagrangian dual problem is:

$$f = \min_{\{\lambda\}} \left\{ \max_{\{\mathbf{b}\}} \left\{ \sum_{c} \sum_{i} u_{i,c} (b_{i,c}) - \sum_{c} \lambda_{c} \left(\sum_{i} b_{i,c} - B_{c} \right) - \lambda_{0} \left(\sum_{c} \sum_{i} b_{i,c} \cdot \sigma_{i,c} - R_{S1} \right) \right\} \right\}$$

$$= \min_{\{\lambda\}} \left\{ \sum_{c} \sum_{i} \max_{\{\mathbf{b}\}} \left\{ \frac{u_{i,c}}{u_{i,c} (b_{i,c}) - (\lambda_{c} + \lambda_{0} \cdot \sigma_{i,c}) b_{i,c}} \right\} + \sum_{c} \lambda_{c} \cdot B_{c} + \lambda_{0} \cdot R_{S1} \right\}$$

$$(0) \quad \mathbf{X}$$
Consider the problem:
$$\left[u_{i,c} (b_{i,c}^{*}) - (\lambda_{c} + \lambda_{0} \cdot \sigma_{i,c}) b_{i,c}^{*} - \operatorname{if} \frac{du_{i,c} (b_{i,c})}{u} \right] \geq (\lambda_{c} + \lambda_{0} \cdot \sigma_{i,c})$$

$$\max\{L_{i,c}\} = L_{i,c}^{*} = \begin{cases} u_{i,c}(0) & \text{if } \frac{du_{i,c}(b_{i,c})}{db_{i,c}} \Big|_{b_{i,c}=0} < (\lambda_{c} + \lambda_{0} \cdot \sigma_{i,c}) < 0 \end{cases}$$

 $\forall b_{i,c} \ge 0, L_{i,c}$ is a concave function and has one and only one maximum $L_{i,c}^*$. Then the dual problem becomes:

$$f = \min_{\{\lambda\}} \{q\} = \min_{\{\lambda\}} \left\{ \sum_{c} \sum_{i} L_{i,c}^* + \sum_{c} \lambda_c \cdot B_c + \lambda_0 \cdot R_{S1} \right\}$$

q has one and only one minimum, which is also the optimal solution to the primal problem.

28.06.2015

Subgradient projection method

TUHH

- Subgradient projection method is applied
 - an iterative method that starts with some initial feasible vector : $\lambda^{(0)} \ge 0$

$$\boldsymbol{\lambda}^{(k+1)} = P(\boldsymbol{\lambda}^{(k)} - \mathbf{t}^{(k)}\mathbf{s}^{(k)}) = \begin{cases} \boldsymbol{\lambda}^{(k)} - \mathbf{t}^{(k)}\mathbf{s}^{(k)} & \boldsymbol{\lambda}^{(k)} - \mathbf{t}^{(k)}\mathbf{s}^{(k)} \ge 0\\ 0 & \boldsymbol{\lambda}^{(k)} - \mathbf{t}^{(k)}\mathbf{s}^{(k)} < 0 \end{cases}$$

- with modified Polyak's step size

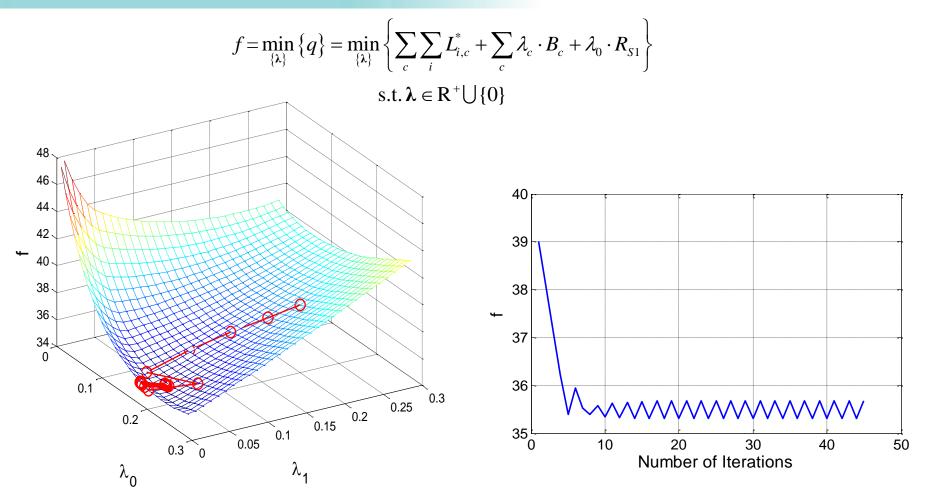
$$\mathbf{t}^{(k)} = \gamma \cdot \frac{f\left(\boldsymbol{\lambda}^{(k)}\right) - f^{(k)}}{\left\| \mathbf{s}^{(k)} \right\|^{2}} \text{ with } \hat{f^{(k)}} = \min_{0 \le j \le k} f\left(\boldsymbol{\lambda}^{(k)}\right) - \delta$$

 $\|\mathbf{s}_{k}\|$ is the Euclidean distance: $\|\mathbf{s}^{(k)}\|^{2} = s_{1}^{2} + s_{2}^{2} + ... + s_{n}^{2}$

Convergence rule

 $f(\boldsymbol{\lambda}^{(k)}) - \min_{0 \le j \le k} f(\boldsymbol{\lambda}^{(k)}) \le o$ o: a predefined value regarding to accuracy

Subgradient projection method



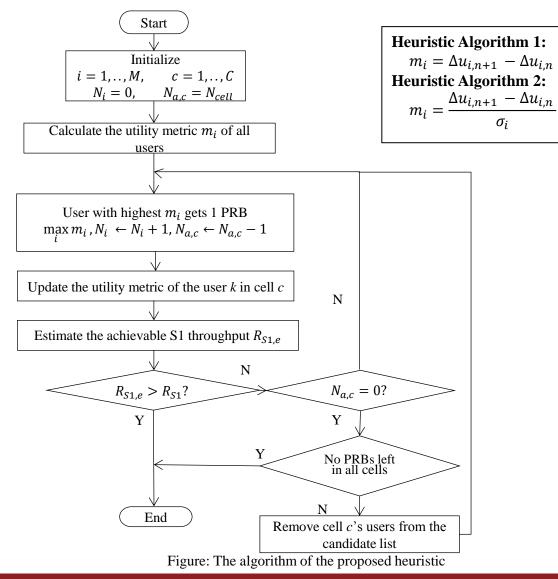
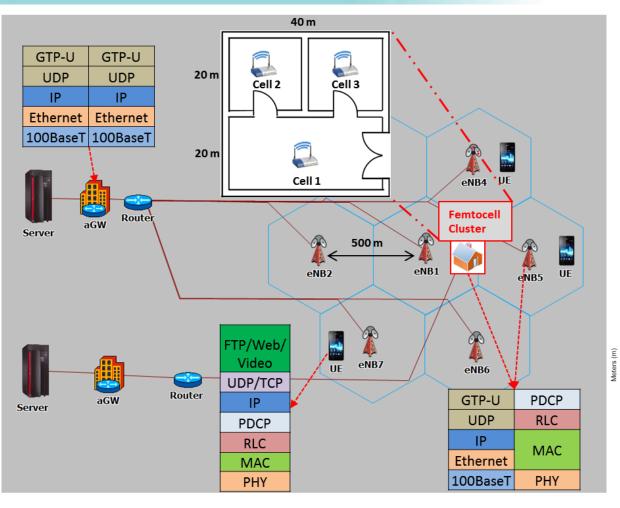

Figure: Visualization of the subgradient method

Figure: Visualization of convergency

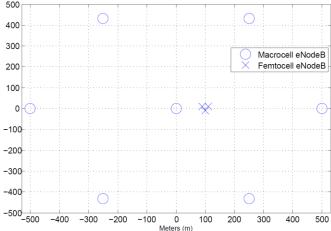
Radio scheduler heuristics

Centralized/Coordinated MAC scheduler	
ser index; Cell index	
umber of users; Number of cells	


i,c	User index; Cell index
M;C	Number of users; Number of cells
Ni	Number of PRBs allocated to user <i>i</i>
N _{a,c}	Total available PRBs in the cell <i>c</i> after HARQ (Hybrid Automatic Repeat Request)
N _{cell}	Number of PRBs in the cell
m_i	QoE metric of user <i>i</i>
u _i	QoE of user i
$\Delta u_{i,n}$	Marginal QoE of user <i>i</i> with <i>n</i> PRBs
σ_i	Channel quality indicator of user i
R_{S1}	Transport network capacity in Mbps
R _{S1,e}	Estimated achievable throughput on S_1

28.06.2015

Simulation tool and scenario



TUHH

Use OPNET discrete event simulation software (v17.5) Includes modeling of

- E-UTRAN and EPC entities
- Full protocol stack including MAC, RLC, PDCP, GTP etc.
- Mobility models
- IP DiffServ

Simulation settings

Parameter	Settings	
Macro eNBs (cells)	7 eNBs with hexagonal coverage, 500ms inter-eNB distance (center eNB located at the original	
settings (fully loaded)	point (0m, 0m))	
	Path loss: 130.5 + 37.6log10(R), R in Km [5]	
	Slow fading: Correlated Log normal, zero mean, 8db std. and 50 m correlation distance	
	Small scale fading: 3GPP Pedestrian A	
	Transmission power: 23dBm per PRB	
Femtocell cluster	Building size with 40mx40m, center coordinate: (200m,0m)	
settings	3 femtocell station coordinates:	
	(210m, -10m), (190m, 10m), (210m,10m)	
	Penetration loss (interference from macro eNBs) over the wall: 12dB mean with 8dB std.	
	Path loss: 41.1 + 16.9*log10(R), R in Km [5]	
	Small scale fading: 3GPP Pedestrian A	
	Transmission power: 0dBm per PRB	
TCP version	New Reno with 64Kbytes receiver buffer size	
Traffic types	VoIP: GSM EFR, codec rate 12.2 kbps	
	Video Streaming: TCP based full buffer streaming	
	HTTP: 2MB page size, Inter arrival time: exp. distributed with mean: 50s	
	FTP: 10MB file size, Inter arrival time: exp. distributed with mean: 50s	
Mobility model	5Km/h, Random waypoint	
aGW shaper	Token Bucket algorithm, maximum token bucket size: 64KB	
Transport limitation	16Mbps or 6 Mbps (aGW->femtocell cluster); 1Mbytes buffer size	
Number of PRBs	25 PRBs (5MHz spectrum at 2.6 GHz)	
Simulation time	1000s (5 runs with different seeds) with warm up period of 300s	

QoE functions

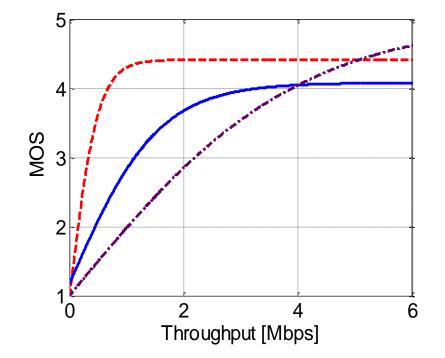
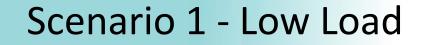



Fig. QoE functions used in the simulation [1][3]

$$u = \frac{A}{1 + e^{-\alpha \cdot r}} + B$$

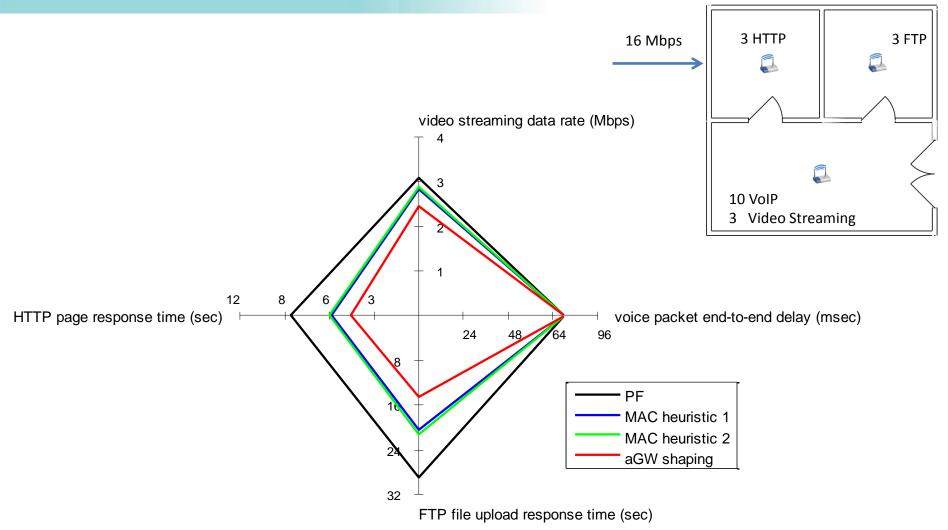
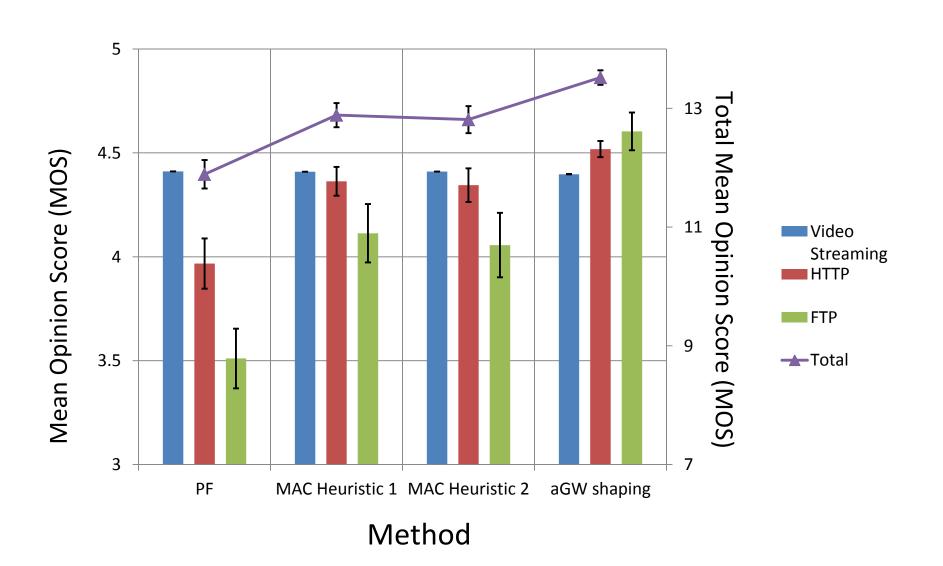
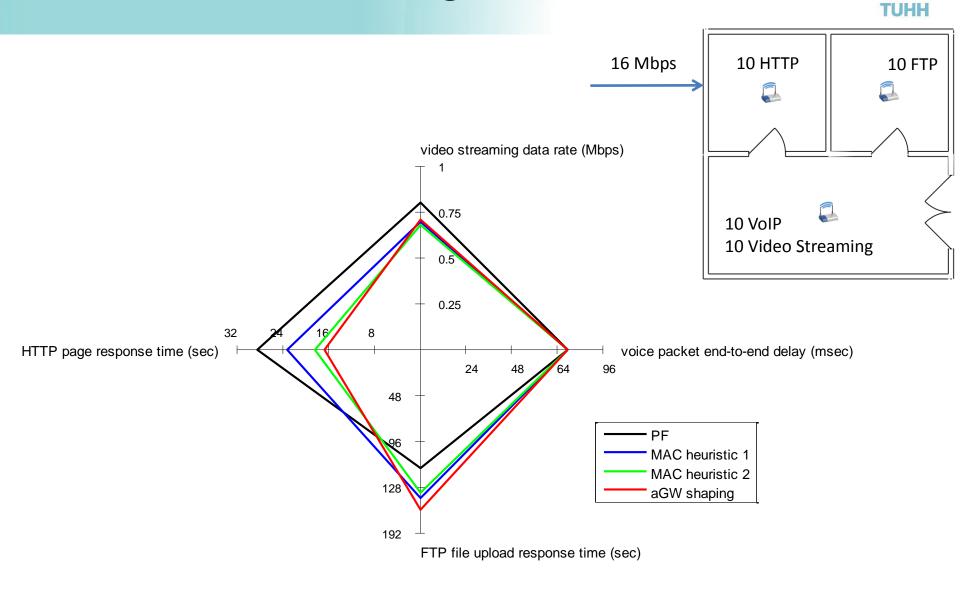

	А	В	α
Video	6.954	-2.542	4.104
Web	5.815	-1.735	1.294
FTP	8	-3	0.5

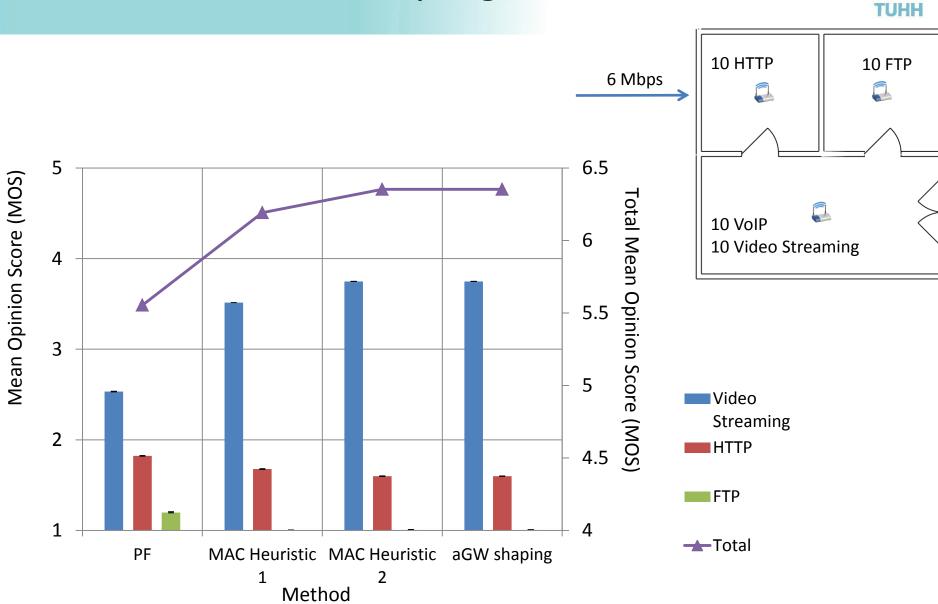
Table: Parameters for QoE Functions



Scenario 1 - Low Load




Scenario 2 – High Load



TUHH

Scenario 2 – High Load

Method

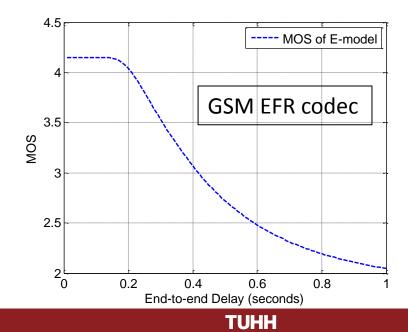
Scenario 3 – Very High Load

ComNets

Institute of Communication Network

- A utility based resource allocation framework for LTE is proposed.
- The problem is formulated as a convex optimization problem and analytically solved using Lagrangian decomposition method.
- The approach is implemented in the simulator. The performance of utility based approach is compared against PF scheduler.

Case	aGW traffic shaping	Radio scheduler
Both S1 and some cells are bottleneck	Lagrangian relaxation Sovled by projected subgradient method	Two heuristics (Centrilized/Coordinated MAC scheduler)
Advantages	 Give the best performance No need to modify the radio scheduler 	 Low computational power Good performance, heuristic 2 is better than 1 in high load scenarios
Disadvantages	 Signallings between eNB and aGW High computational power 	 Need a centrilized/coordinated scheduler among the cells sharing the same transport link


Ongoing Works

$$\max\left\{U=\sum_{c}\sum_{i}w_{i,c}\cdot u_{i,c}\left(r_{i,c}\right)\right\}$$

Traffic Type	Delay sensitive traffics (Real-time)	Rate sensitive traffics (Non Real-time)
Utility Functions	$u_{i,c}\left(r_{i,c}\right) = \frac{\left u'\left(d_{i,c}\right)\right }{\lambda_{i,c}} \cdot r_{i,c}$	$u_{i,c}(r_{i,c}) = \frac{A}{1 + e^{-\alpha_{i,c} \cdot r_{i,c}}} \cdot r_{i,c} + B$
Optimatizon Model	Linear Programming	Concave Optimatization

References

- 1. ITU-T recommendation G.1070: Opinion model for videotelephony applications (04/2007)
- 2. K. Yamagishi, T. Hayashi "Parametric Packet-Layer Model for Monitoring Video Quality of IPTV Services", ICC 2008.
- 3. ITU-T, G.1030: Estimating end-to-end performance in IP networks for data applications, 2005.
- 4. Singh, A.; Mahmoud, A.; Koensgen, A.; Li, X.; Görg, C.; Kus, M.; Kayralci, M. & Grigutsch, J.Pesch, D.; Timm-Giel, A.; Calvo, R.; Wenning, B.-L. & Pentikousis, K. *(Eds.)* Enhancing Quality of Experience (QoE) Assessment Models for Web Traffic *Mobile Networks and Management, Springer International Publishing,* 2013, 125, 202-215
- 5. Guidelines for evaluation of radio interface technologies for IMT-Advanced, ITU-T Recommendation M.2135-1, 2009.

Thanks and any Questions?

Contact: **Ming Li** Institute Communicatioin Networks Hamburg University of Technology <u>Ming.li@tuhh.de</u> +49 40 428 78 34 85

