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Why Wireless

= Reduce wiring

= Simplified maintenance
= Flexible communication architecture

https://commons.wikimedia.org/wiki/File:US_Navy_090622-N-6720T-
015_Aviation_Machinist%27s_Mate_1st_Class_James_Gregorio,_assigned_to_the_jet_engine_shop_in_the_aviation_
intermediate_maintenance_department,_installs_a_wiring_harness_on_an_F-A-18E_Super_Hornet_engine.jpg

http://www.halo.dIr.de/instrumentation/basis.html
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What do we need
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[2] Wireless UWB Aircraft Cabin Communication System, 2011, Frank M. Leipold, Doctoral Thesis, TUM EADS, Germany
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M2M device traffic in Aircraft @% T|_|T|

= [n case of an alarm or power shortage recovery, simultaneous
synchronization requests will take place

= 1500 nodes for test measurements
= 800 nodes for PAX Localization and Tracking
= Nearly 5k total in A380

= A lot more in future aircrafts



Previous Work for Aircraft Random Access
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= UWB 8 free beacon slots for joining the channel

= 1 superframe 65 ms

= No collision handling just random backoff
= Limits the system 40 nodes per base station

= Dimensioning without considering sensor nodes
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LTE RACH 2 TUT

= LTE-U chip possibility
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Standard LTE on M2M

= Max. Retrials 8 [4] osf

= Preambles 54 [3] ol
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¥ MaxBO 20 ms, TST 160 ms
4+ MaxBO 100 ms, TST 800 ms
O MaxBO 500 ms, TST 4000 ms

= PRACH Configuration Index 6
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= Safe choice would be up to
5000 users and 4 seconds.

Outage Probability
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[4] R. R. Tyagi, F. Aurzada, K. Lee, and M. Reisslein, “Impact of Retransmission Limit on Throughput and Delay of Preamble Contention in LTE-Advanced Random Access” no. May, pp. 0-23, 2012.

[3] 3GPP, “R2-105212 MTC simulation assumptions for RACH performance evaluation.” TR R2-105212, Aug. 2010.



Tree algorithm on M2M 1/2 &5 T|_|T|
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SFN Offset Preamble ID TRAO Offset Group Index
(6 bits) (6 bits) (10 bits) (3 bits)

Total Length = 25 bits

= Modified new message 4b for collision resolution
= G groups with g preambles

= Dedicated preamble group and time offset for collided requests

[9] P. Popovski, “Efficient LTE Access with Collision Resolution for Massive M2M Communications.” Globecom Workshops (GC Wkshps), 2014 , vol., no.,
pp.1433,1438, 8-12 Dec. 2014 9



Tree algorithm on M2M 2/2 @?@ T|_|T|
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= Decrease outage and instability due to coordination
= [ncrease reliability with sacrificing latency

= Still room for improvement in terms of RACH utilization

[9] P. Popovski, “Efficient LTE Access with Collision Resolution for Massive M2M Communications.” Globecom Workshops (GC Wkshps), 2014 , vol., no.,
pp.1433,1438, 8-12 Dec. 2014 10



Conclusion

= Aim
= Ensuring reliability with least amount of delay sacrificed
= Testing the limits of the RACH of LTE
= Different RACH behavior for M2M and others
= Method
= M2M synchronous arrivals can be used as an advantage
= Vision
= Massive M2M in future

o TUTI
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Questions?
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