Modeling and Stochastic Analysis of Distributed Control Problems to Meet Hard Real-Time SLA Conditions

Paul J. Kühn Institute of Communication Networks and Computer Engineering (IKR) University of Stuttgart, Germany paul.j.kuehn@ikr.uni-stuttgart.de

VDE/ITG Open Workshop on Vehicular Communication Ericsson ICT Development Center Eurolab, Herzogenrath/Aachen, March 15, 2018

- Multi-Layer Protocol Architectures and Applications
- Link-Layer Protocol Modeling
- Performance Evaluation by Task Graph Analysis
 and Queuing Model Aggregation
- Application to Networked Control Systems (NCS)
- Conclusions and Outlook

1 Multi-Layer Protocol Architectures and Applications

Internet Protocol Architecture

Applications

Voice/Video/Data Communication End-to-End

Web Access Services

Distributed Cloud Services

Distributed Control Applications: Cyber-Physical Systems (CPS) with Applications in

Smart Grid, Integrated Production Systems, Traffic Control, ...

Example: Real-Time Performance of Networked Control Systems (NCS)

1 Multi-Layer Protocol Architectures and Applications

- Requirements in Cyber-Physical Systems
 - Reliability, Dependability, Security, Management, ...
 - Performance: expecially Quality of Service (QoS)
 under Service Level Agreements (SLA)
- Methodology applied in this Study
 - Layer-Specific Protocol Models
 - Stochastic Task Graph Reduction
 - Queuing Model Analysis
 - Multi-Layer Protocol Models
- Application Example
 - Layer 2b Protocol Models for "Stop- and Wait" (SW) and "Selective Repeat" (SR) Protocols
 - Application to Networked Control Systems (NCS) as Application Layer

- → Hybrid Task Graph Representation
- Queuing Model Representation
- ⇒ Aggregated Layer Performance
- ⇒ Successive Aggregation Methodology

2 Link-Layer Protocol Modeling

2.1 Send-and-Wait (SW) Protocol with ACK/TO Control

Model

Parameters

Frame Arrivals	G(M)
Frame Buffer Capacity	$0 \le s \le \infty$
Frame Processing	G(D), T ₁
Frame Transmission	G(D), Tp
Propagation Delay	D, T _{PD}
Ack. Frame Transm.	G(D), T _A
Timeout time	D, T0
T0 Recovery Prob.	q ₁
CRC Frame Error Prob.	q ₂
CRC ACK Error Prob.	q ₃

• Synchronisation Conditions indicated by Petri-Net Symbols and Token Buffers

Frame Loss

- Disadvantage of the SW-Protocol: Throughput Limitation
- Aim of the Analysis: Virtual Frame Transmission Time T_x

2 Link-Layer Protocol Modeling

2.2 Selective – Repeat (SR) Protocol with ACK/TO Control

Model

Parameters

- System Parameters: as for the SW-Protocol
- Additional Parameter:
 Window Size w of the SR-Protocol

 $0 \le w \le 2^{m-1}$

for cyclic Frame Numbers out of the Internal $[0,2^{m}-1]$, m = 1, 2, ...

- Synchronization for each admitted Frame identical as in Case of the SW Protocol
- Virtual Transmission Times T_X are iid-Variables for each admitted Frame
- Advantage of the SR-Protocol: Throughput Extension

3 Performance Evaluation by Task Graph Analysis and Queueing Model Aggregation

3.1 Task Graph for SW Protocol with ACK/TO

• Task Graph for T_{χ} composition:

- A successful Frame Transmission Cycle happens only when the Frame **and** the ACK are successfully transmitted **and** if Cycle Time $T_0 = T_2 + T_3 < T0$ where T0-Recovery Probability $q_1 = P\{T_2 + T_3 > T0\}$
- The Frame fails successful transmission with Failure Probability $q_F = 1 (1 q_1)(1 q_2)(1 q_3)$
- Phase $T_0 = T_p + T_A + 2T_{PD}$
- Phase $T_R = \{T_0 | T_0 < T0\}$

TO 3.1 Task Graph for SW Protocol with ACK/TO

- Virtual Frame Transmission Time T_X
 → Service Time of a Queuing System
- Queuing System Type
 GI/G/1 for SW-Protocol
 GI/G/w for SR-Protocol

© 2018 Universität Stuttgart • IKR

3 Performance Evaluation by Task Graph Analysis and Queueing Model Aggregation

3.3 Analysis of Virtual Frame Transmission Time T_x (Constant Frame Sizes)

• Random Number N of Frame Transmissions:

PD:
$$p_n = P\{N = n\} = q_F^{n-1}(1-q_F), n = 1,2,...$$

RV:
$$T_X(n) = T_1 + (n-1)T0 + \{T_2 + T_3 | T_2 + T_3 \le T0\}.$$

PDF:
$$f_X(t) = (1 - q_F) \sum_{i=1}^{\infty} q_F^{i-1} \delta(t - [t_1 + it_0]).$$

Average:
$$E[T_X] = t_1 + t_0 + \frac{T0}{1 - q_F} q_F.$$

Moments:

$$\mathsf{E}[\mathsf{T}_x^{n}] = (1 - \mathsf{q}_F) \sum_{i=1}^{\infty} \mathsf{q}_F^{i-1}[t_1 + t_0 + (i-1)\mathsf{T}0].$$

max. Rate: $\lambda_{max} = 1/E[T_X] = 1/t_X$.

3 Performance Evaluation by Task Graph Analysis and Queueing Model Aggregation

3.4 Queuing System Analyses

- For Queuing Model GI/G/n: no exact Solution available
- Exact Solutions are known for: GI/M/c GI/M/c M/D/c Useful Approximations: GI/G/1 2-Moment Approximations **Output Process** M/D/c $M/E_{k}/n, M/D/c,$ **Queuing System Tables:** F.S. Hiller, M.I. Reimann ٠ $D/M/c, E_k/E_m/c$ Stanford University, 1981, USA P. J. Kühn 30 Queuing Systems University of Stuttgart, 1976, D GI/G/c Approx. L.P.Selen, H.C.Tijms, M.H. van Hoorn Free University Amsterdam, 1985, NL W. Whitt GI/G/c Bell Laboratories, 1993, USA

- 4.1 Distributed NCS with Embedded Networks (Aggregated Link Layer Protocol Models)
 - Control Loop with Embedded Network

- Network N Representation as a Bi-Directional Layer 2b Subsystem Model with SW-Protocol between Controller C and Input of Actuator A and between the Output of Actuator A and Decision Operator of the Controller C, respectively
- Representation of the two Embedded N-Models by Queuing Systems of Type GI/G/1, where

 - G = Flow Time (i.e., Waiting + Service Time) of the Protocol Queueing Model GI/G/1

4.2 Real-Time Performance of the NCS for Event-driven Control

• Aggre	gated Queueing Model M/G/1	Dependent on
W	Probability of Delay	ρ
$E[T_w]$	Mean Waiting Time	ρ, Ε[T _X], c _X ²
$E[T_w^2]$	Second Moment of Waiting Time	ρ, Ε[T _X], Ε[T _X ²], Ε[T _X ³]
$E[T_{F}]$	Mean Flow (Sojourn) Time	ρ, Ε[T _X], Ε[T _W]
C _F	Coefficient of Variation of Flow Time	ρ, Ε[T _P], Ε[T _F ²]
c _D	Coefficient of Variation of the Delayed Frames	ho, E[T _X], E[T _X ²], E[T _X ³]
W ^c (t)/W	Compl. DF of Waiting Times of Delayed Frames Approximated by Weibull-Distribution Function	
t _{Th}	Threshold Value for Real-Time Delays	
р	Percentile of Delayed Frames $p = W^{c}(t_{Th})/W$	

4.2 Real-Time Performance of the NCS for Event-driven Control

Network and Protocol Parameters

Constant Frame Processing Time (T ₁)	t ₁	= 0.1 ms			
Constant Frame and ACK Transmission Times (T_P , T_A)					
Constant Propagation Delay Time (T _{PD})					
Cycle Time $T_0 = T_P + T_A + 2T_{PD}$	t ₀	= 1 ms			
Frame Failure Probability	q_F	= 0.1			
Frame Arrival Rates λ	λ	= 0.1,, 0.75 Frames/ms			
Percentiles	р	= 0.05, 0.02, 0.01			
Protocol SW with ACK/T0 Control		= 1.5 ms			
 Control System Parameters 					
Controller Type: PID $C(s) = P + I/s + Ds$	Ρ	= 0.21, I = 0.344, D = 0.03			
Plant System Function A(s)	A(s)	$= 1000/(s^2 + s)$			

4.3 Numerical Results and Verification by Simulations

Verification of Results for SW Protocol with ACK/TO Control

10gemer with computer similation Result							
SW Pr	SW Protocol with Ack/Timeout Control						
λ /n		0.10	0.30	0.50	0.70	0.75	
ρ		0.127	0.380	0.633	0.887	0.950	
$E[T_X]$	analytical	1.267	1.267	1.267	1.267	1.267	
	simulation	1.266	1.267	1.267	1.267	1.267	
E[T _w]	analytical	0.108	0.455	1.283	5.812	14.117	
	simulation	0.108	0.457	1.290	5.856	15.093	
	analytical	0.851	1.198	2.026	6.556	14.860	
ι _D	simulation	0.853	1.210	2.034	6.660	14.346	
c _D	analytical	0.867	0.907	0.946	0.984	0.993	
	simulation	0.872	0.911	0.949	0.988	0.995	
$E[T_F]$	analytical	0.894	1.241	2.069	6.599	14.903	
	simulation	0.894	1.244	2.076	6.642	15.133	
	analytical	0.731	0.831	0.912	0.976	0.990	
$c_{\rm F}$	simulation	0.733	0.833	0.914	0.980	0.992	

Table 1. Results of the ACK/TO SW Protocol Analysis Together with Computer Simulation Results

4.3 Numerical Results and Verification by Simulations

Compl. DF of Delayed Frames

Different Load Levels together with Simulation Results

- Delay Thresholds for
 - 5 different Load Cases
 - 3 different Percentile Values

Table 1. Delay Thresholds t_{Th} for Three Different Percentiles p							
<u>λ 1/ms</u>	0.10	0.30	0.50	0.70	0.75		
t_{Th} ms, $p = 0.05$	2.1	3.9	5.9	19.7	42.2		
t_{Th} ms, $p = 0.02$	2.4	4.2	8.9	24.7	57.8		
$t_{\rm Th}$ ms, $p = 0.01$	2.8	5.0	9.2	29.8	67.8		

4.3 Numerical Results and Verification by Simulations

 Unit-Step Function Responses y(t) for different Load Levels

Unit-Step Function Responses of the NCS with SW LLC Protocol for Five Load Levels λ for n = 1 Server

 Unit-Step Function Responses for Plant System Control for 4 Different Constant Network Delays τ

Unit-Step Responses for Four Constant Network Delays Indicated in the legend

5. Conclusions and Outlook

Conclusions

- Novel Approach for a Comprehensive Link Layer Protocol Model Using Logical PN Symbols within a Task Graph Representation
- Exact Mathematical Performance Analysis
 Based on a Method of Stochastic Task-Graph Reduction Method
- Aggregation of a Complete Protocol Layer by a Stochastic Random Variable as Basis for a stepwise Aggregation of Multi-Layer Protocol Architectures
- Method has been demonstrated for Networked Control Systems (NCS) across common Layer 2b-Protocols SW and SR with ACK/TO Control to analyse in particular their Real-Time Performance

Outlook

- Extension of Method to NCSs with Shared Common Network Infrastructures as
 - shared MAC-Layer Protocols
 - shared Internet TCP Layer Protocol