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Networked Control Systems (NCS): control loops
closed over the network.

Stochastic LTI control system:

xk+1 = Axk +Buk +wk ,

uk =−Kxk ,

xk plant dynamic, uk control law.

Sensor sends xk to the Controller.

Controller computes and sends uk to the Actuator.
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→ 256 bits @ 20Hz = 5 kbps.

Downlik traffic:

u→ 64 bits @ 20Hz = 1.25 kbps.

WSN (PHY IEEE 802.15.4) link→ 250 kbps.
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Motivation

Wireless Sensor Networks (WSN) can support NCS traffic.
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Motivation

Wireless Sensor Networks (WSN) can support NCS traffic.

Control loops pose strict QoS requirements on wireless communications.

WSN suffers from external interference and unreliable links [GVZK16].

Problem: Current WSN lack dynamic real-time QoS provisioning.

Approach:

1. Definition of a QoS provisioning framework for IWSN.
2. Implementation of the framework in a testbed.

Samuele Zoppi | ITG Fachausschuss 5.2 workshop on “Cellular Internet of Things” | Munich, Germany 4

Chair of Communication Networks, Department of Electrical and Computer Engineering, Technical University of Munich



Outline

Background & Motivation

QoS Provisioning Framework

Implementation

Conclusions & Further Work

Samuele Zoppi | ITG Fachausschuss 5.2 workshop on “Cellular Internet of Things” | Munich, Germany 5

Chair of Communication Networks, Department of Electrical and Computer Engineering, Technical University of Munich



Network Architecture

Centralized, star topology.

GW1 GW2
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s1 s2 s3

Network architecture.
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Network Architecture
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Network Architecture

Centralized, star topology.

Network elements:

1. Application (App): industrial NCS application

2. Network Manager (NM): manager of the
Network Resources of the entire WSN

3. Gateway (GW): interface btw
the WSN devices, the NM and Apps

4. Sensor (s): WSN device

Data links btw NM and WSN devices
through the GW.

Control links btw App and WSN devices
through the GW.

GW1 GW2

NMApp1 App2

s1 s2 s3

Network architecture.
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QoS Framework (1)
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3. Link Quality Information of the radio resources.
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Wireless DetServ

Radio Resource Manager inputs:

1. QoS requirements from the application.
2. QoS Model of the MAC radio resources.
3. Link Quality Information of the radio resources.

Radio Resource Manager outputs:

1. Radio resources for Data packets
(application).

2. Radio resources for Control packets
(schedules, LQI probes, ...).
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QoS Framework (2)

Dynamic scheduling is possible in a TDMA-FDMA
radio resource grid model. f

t

Beacon Data Probe

Schedules Link Info

Dynamic scheduling protocol.
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QoS Framework (2)

Dynamic scheduling is possible in a TDMA-FDMA
radio resource grid model.

Dynamic scheduling protocol:

1. Acquisition of Link Quality Information (input)
→ estimated Packet Delivery Ratio
→ EWMA for estimation

2. Acquisition of QoS requirements (input)
→ Target application reliability (i.e. 90%)
→ Target delay bound (deadline)

3. Distribution of new schedules (output)
→ sequence of radio resources (time-freq. pairs)
→ distributed using the beacon
→ calculated with a reliability-based scheduler

f

t

Beacon Data Probe

Schedules Link Info

Dynamic scheduling protocol.
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QoS Framework (3) - Scheduling algorithm

Reliability is provided allocating multiple transmissions in the frame.
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QoS Framework (3) - Scheduling algorithm

Reliability is provided allocating multiple transmissions in the frame.

The radio resources are modeled using a scheduling graph:

• Nodes represent time instants before/after time slots.

• Edges represent different frequencies and they are weighted by their PDR.

n0 n1 n2 n3 n4

γ0,0 = 0.1

γ0,1 = 0.7

γ0,2 = 0.1

γ0,3 = 0.6

γ0,4 = γs = 0

︸ ︷︷ ︸
1st time slot

γ1,0 = 0.2

γ1,1 = 0.1

γ1,2 = 0.9

γ1,3 = 0.1

γ1,4 = γs = 0

︸ ︷︷ ︸
2nd time slot
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︸ ︷︷ ︸
3rd time slot
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4th time slot
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QoS Framework (3) - Scheduling algorithm

Reliability is provided allocating multiple transmissions in the frame.

The radio resources are modeled using a scheduling graph:

• Nodes represent time instants before/after time slots.

• Edges represent different frequencies and they are weighted by their PDR.

A Constrained Shortest Path scheduling algorithm finds the schedule (path)
fulfilling the target reliability. → {(0,1) ,(1,3) ,(2,0)}

n0 n1 n2 n3 n4

γ0,0 = 0.1

γ0,1 = 0.7

γ0,2 = 0.1

γ0,3 = 0.6

γ0,4 = γs = 0

︸ ︷︷ ︸
1st time slot

γ1,0 = 0.2

γ1,1 = 0.1

γ1,2 = 0.9

γ1,3 = 0.1

γ1,4 = γs = 0

︸ ︷︷ ︸
2nd time slot

γ2,0 = 0.2

γ2,1 = 0.1

γ2,2 = 0.1

γ2,3 = 0.8

γ2,4 = γs = 0

︸ ︷︷ ︸
3rd time slot

γ3,0 = 0.1

γ3,1 = 0.1

γ3,2 = 0.8

γ3,3 = 0.2

γ3,4 = γs = 0

︸ ︷︷ ︸
4th time slot
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QoS Framework (4) - Results

Simulation results of dynamic scheduling with latency and reliability constraints.
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QoS Framework (4) - Results

Simulation results of dynamic scheduling with latency and reliability constraints.

WSN operating in a dynamic interference scenario (Wi-Fi APs, @2.4GHz).
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QoS Framework (4) - Results

Simulation results of dynamic scheduling with latency and reliability constraints.

WSN operating in a dynamic interference scenario (Wi-Fi APs, @2.4GHz).

Dynamic scheduling in presence of increasing Wi-Fi transmission power (Ptx).
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QoS Framework (4) - Results

Simulation results of dynamic scheduling with latency and reliability constraints.

WSN operating in a dynamic interference scenario (Wi-Fi APs, @2.4GHz).

Dynamic scheduling in presence of increasing Wi-Fi transmission power (Ptx).
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Reliability-based scheduling [eaED].

WDetServ guarantees reliability and delay bounds reacting against interference.
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Implementation (1)

Deployment of an WDetServ NCS testbed:

1. Control logic (Controller) in the Cloud.

2. Sensing and Actuation in the WSN devices.

3. Gateway acts as forwarding entity.

4. Inverted Pendulum as benchmark control
application.

GW1 GW2

NMApp1 App2

s1 s2 s3
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Implementation (2)

Problem: several HW and SW latency bottlenecks.
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Sensor-to-cloud delay measurements[GZO+].
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Implementation (2)

Problem: several HW and SW latency bottlenecks.

Solution: ad-hoc HW solutions for GW and WSN:
• Gateway

high perf., multi-radio, multi-processor
−→ low-latency, multi-channel SDR

• Sensor
limited perf., single antenna, single processor
−→ Zolertia Z1/RE-Mote, TI SimpleLink
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Conclusions

NCS traffic can be supported by WSN if QoS provisioning is implemented.
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Conclusions

NCS traffic can be supported by WSN if QoS provisioning is implemented.

Wireless DetServ provides the building blocks for QoS provisioning (latency, reliability, QoC, ...)
in WSN.

The implemented reliability-based scheduler is able to react to changes in the wireless environment.

Latency is the major issue for HW implementation (radio, processing, ext. interface).
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Further Work

Measurements of NCS Inverted Pendulum operating over the testbed will be performed.

NCS cross-layer scheduling algorithms will be developed.

Different Link Quality Estimators will be evaluated in the testbed.

Multi-radio, multi-processor, high-speed interface solutions will be implemented.
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