

CELLULARIOT

From 3GPP Release 13

EC-GSM-IoT

Global cellular IoT for all GSM markets

LTE-M

Wide range of Massive IoT applications

NB-IoT

Ultra low-end Massive IoT applications

- Extending existing cellular networks for IoT
 - Co-existence with high performance mobile broadband services / devices
- Optimized for IoT services
 - Infrequent small messages
 - Low device complexity & cost
 - Long battery lifetimes
 - Extended coverage
 - Scales to massive number of connected devices

CELLULARIOT

From 3GPP Release 13

EC-GSM-IoT

Global cellular IoT for all GSM markets

LTE-M

Wide range of Massive IoT applications

NB-IoT

Ultra low-end Massive IoT applications

- Extending existing cellular networks for IoT
 - Co-existence with high performance mobile broadband services / devices
- Optimized for IoT services
 - Infrequent small messages
 - Low device complexity & cost
 - Long battery lifetimes
 - Extended coverage
 - Scales to massive number of connected devices

FLEXIBLE DEPLOYMENT BASED ON LTE NETWORK INFRASTRUCTURE

Device receives part of LTE carrier
Devices Multiplexed across LTE carrier
Leverage full capacity of wideband LTE carrier

Device receives NB-IoT carrier

The capacity of NB-IoT carrier is shared by all devices

Capacity is scalable by adding additional NB-IoT carriers

CELLULAR IOT FEATURES (1)

CELLULAR IOT FEATURES (2)

SMART CITY - IOT COVERAGE

Massive IoT connected devices in a city scenario

- Outdoors only signal attenuation (no indoors path loss)
- Indoors apartment (indoors path loss of 10–30 dB)
- Indoors basement partly underground (additional indoors path loss of 5 dB)
- Deep indoors basement fully underground (additional indoors path loss of 20 dB)

RADIO MODEL FOR SMART CITY IOT

- Simulation model for broadband LTE, LTE-M and NB-IoT in a city
 - 3-dimensional city model
 - Close to 1,000 buildings / km²
 - An average of 5 floors per building
 - Typical radio base station site characteristics inter-site distances of around 500 meters
 - Line-of-sight and non-line-of-sight characteristics, including outdoor-to-indoor and indoor radio propagation models
 - Commercial LTE network used for calibration

- IoT devices uniformly distributed outdoors and indoors across the city
 - Density of around 20,000 devices / km²
 - Signal strength attributed to the different environments

RADIO MODEL FOR SMART CITY IOT

- Simulation model for broadband LTE, LTE-M and NB-IoT in a city
 - 3-dimensional city model
 - Close to 1,000 buildings / km²
 - An average of 5 floors per building
 - Typical radio base station site characteristics inter-site distances of around 500 meters
 - Line-of-sight and non-line-of-sight characteristics, including outdoor-to-indoor and indoor radio propagation models
 - Commercial LTE network used for calibration

- IoT devices uniformly distributed outdoors and indoors across the city
 - Density of around 20,000 devices / km²
 - Signal strength attributed to the different environments

RADIO PROPAGATION MODEL

Model

- 3D city model created based on city construction statistics (roads, houses)
- Simplified raytracing from base station sites
 - Explicit line-of site (LoS) determination to outdoor user or building (for indoor user)
- Combination of statistical propagations models per user
 - Outdoor LoS / non-LoS
 - Outdoor-to-indoor penetration loss
 - Indoor propagation

City cellular network

- Configuration of the model for a metropolitan city with characteristic building statistics
- Real site data of a commercial LTE network
- Calibration of propagation model with real-life
 LTE network measurements

J.-P. Charles, et al. "Refined Statistical Analysis of Evolution Approaches for Wireless Networks," IEEE Trans. on Wireless Communications, vol. 14, no. 5, May 2015

EXTENDING LTE COVERAGE FOR IOT

Percentage of devices reached in the massive IoT city scenario

800 MHz band 2.6 GHz band LTE-M NB-IoT LTE MBB NB-IoT LTE MBB LTE-M (164 dB) (144 dB) (160 dB) (144 dB) (160 dB) (164 dB)¹ Outdoors 100 100 100 100 100 100 Indoors – apartment 100 97 100 100 100 100 Indoors - basement partly underground 83 99 100 100 99 99 Deep indoors – basement 77 99 32 86 92 99 fully underground

Coverage is enhanced for low data rate IoT devices by reducing the data rate

¹ Radio Frequency (RF) requirements for NB-IoT have not yet been formally defined for the 2.6 GHz band

CONCLUSION

- Cellular networks have been extended for IoT connectivity
 - LTE Machine Type Communication (LTE-M)
 - Narrowband IoT (NB-IoT)
 - Extended Coverage GSM IoT (EC-GSM-IoT)
- Cellular IoT: optimized for IoT device and service needs
 - Long battery lifetimes
 - Low device complexity & cost
 - Extended coverage
 - Scalability for massive number of devices
- Typical cellular network deployments with Cellular IoT capabilities can provide connectivity for Smart City IoT applications

MORE INFORMATION

3

- O. Liberg, M. Sundberg, Y.-P. E. Wang, J. Bergman, J. Sachs, Cellular Internet of Things Technologies, Standards and Performance, Academic Press, September 2017, ISBN: 9780128124581 https://www.elsevier.com/books/cellular-internet-of-things/liberg/978-0-12-812458-1
- White Paper, "Coverage Analysis of LTE-M Category-M1," January 2017,
 https://www.ericsson.com/assets/local/narratives/networks/docume-nts/coverage-analysis-of-lte-cat-m1-white-paper.pdf
- Ericsson Mobility Report, June 2017
 https://www.ericsson.com/en/mobility-report

eBook ISBN: 9780128124598 Paperback ISBN: 9780128124581

