# REAL TIME CONTROL IN 5G: Embedded Communication Networks -A System-Theoretic Modeling Approach

Paul J. Kühn
Institute of Communication Networks and Computer Engineering (IKR)
University of Stuttgart
Email: paul.j.kuehn@ikr.uni-stuttgart.de

Contribution Submitted to VDE/ITG Section 5.2.4 Workshop "5G System Architecture", Nokia Networks, Munich, Dec. 10-11, 2015

## **Outline**

- 1. Distributed Real-Time Applications
- Communication Networks as Embedded Systems in Distributed Networked Control Systems (NCS) -A System Theoretic Approach
- 3. Application Examples
  - 3.1 SDN- and NFV-Based Control of RT Packet Flow Switching
  - 3.2 Latencies for Error-Control Protocols
  - 3.3 E-E Latency in Core Packet Networks
- 4. Conclusions

## **Outline**

- 1. Distributed Real-Time Applications
- Communication Networks as Embedded Systems in Distributed Networked Control Systems (NCS) -A System Theoretic Approach
- 3. Application Examples
  - 3.1 SDN- and NFV-Based Control of RT Packet Flow Switching
  - 3.2 Latencies for Error-Control Protocols
  - 3.3 E-E Latency in Core Packet Networks
- 4. Conclusions

# 1. Distributed Real-Time Applications

- Distributed Electric Power Control in the "Smart Grid"
  - Feeding highly volatile el. Energy in the Power Grid
  - Feeding Control Based on Phasor Sensing Data
- Smart Traffic Control ("Smart City")
  - Intelligent Traffic Control
  - Accident / Desaster Management
- Integrated Industry Process ("Industry 4.0")
  - Production Automation
  - Integration in Enterprise Business Processes
- Human Health Surveillance
  - Sensoric Health Parameter Monitoring
  - Case Management

## **Outline**

- 1. Distributed Real-Time Applications
- 2. Communication Networks as Embedded Systems in Distributed Networked Control Systems (NCS) A System Theoretic Approach
- 3. Application Examples
  - 3.1 SDN- and NFV-Based Control of RT Packet Flow Switching
  - 3.2 Latencies for Error-Control Protocols
  - 3.3 E-E Latency in Core Packet Networks
- 4. Conclusions





Methodology: System Theoretic Approach

#### 1. Modeling

- a) "Top Down" Approach from Application Contexts to Communication Networks
  - Identifying Interactions between Entities, e.g., Control Loops, Manufacturing Stations, ...
  - Identifying Communication Requirements between these Entities
  - Specifying Communication Network Requirements between Distantly Located Entities in Terms of: Throughput Rates, Latencies, etc. Quantitatively (Metrics)
- b) "Bottum-Up" Approach from Communication Networks to Applications
  - Identifying Available Communication Media (wired, wireless, electric, optic, ...)
  - Identifying Network Topologies and Network Technologies
  - Specifying Network Services, Architectures and Protocols
     Traffic and Performance Metrics
     Appropriate Communication Network Models

Methodology: System Theoretic Approach

#### 2. Performance Analysis

- a) Experimental Approach through Experiments, Measurements and Simulation
  - Design of a Physical Environment as Experimental Testbed
  - Executing Experiments and Performing Measurements
  - Development of System Simulation Models
     Running Simulations for Typical System Scenarios
     Extraction of Performance Results from Simulations
- b) Analytical Approach through Mathematical Performance Models
  - Identifying Existing/Approved Standard Queuing Models
  - Developing Complex Queuing Network Models
     Determination of the Main Application Requirements by Performance Metrics
  - Task Graph Representations and Task Graph Analysis by
  - Task Graph Reductions by Stepwise Aggregation of Tasks Probabilistically
  - Aggregation of Specific Models into higher Layer Models

## **Outline**

- 1. Distributed Real-Time Applications
- Communication Networks as Embedded Systems in Distributed Networked Control Systems (NCS) -A System Theoretic Approach
- 3. Application Examples
  - 3.1 SDN- and NFV-Based Control of RT Packet Flow Switching
  - 3.2 Latencies for Error-Control Protocols
  - 3.3 E-E Latency in Core Packet Networks
- 4. Conclusions

 SDN- and NFV-Based Control of Real-Time Packet Flow Switching Network Architecture



 SDN- and NFV-Based Control of Real-Time Packet Flow Switching Control Plane Actions and Data Plane MPLS Path Establishment



 Packet Arrival, Flow Detection



- Packet Arrival, Flow Detection
- 2. DB Inquiry



- Packet Arrival, Flow Detection
- 2. DB Inquiry
- 3. Controller Communication (Request)



- Packet Arrival, Flow Detection
- 2. DB Inquiry
- 3. Controller Communication (Request)
- Controller Communication (Command)



- Packet Arrival, Flow Detection
- 2. DB Inquiry
- 3. Controller Communication (Request)
- 4. Controller Communication (Command)
- 5. Label Path Information



- Packet Arrival, Flow Detection
- 2. DB Inquiry
- 3. Controller Communication (Request)
- 4. Controller Communication (Command)
- 5. Label Path Information
- Label Switched Packet Flow

 SDN- and NFV-Based Control of Real-Time Packet Flow Switching Control Plane Task Graph





 $\mathsf{S}_1$ ,  $\mathsf{S}_2$ : Re-Synchronization Points (Maximum Operator) After parallel path

#### Modeling Protocol Control

Message Sequence Chart for "Send-and-Wait" Protocol with "Timeout Recovery"



### Modeling Protocol Control

Message Sequence Chart for "Send-and-Wait" Protocol with "Timeout Recovery"



### Task Graph of "Send-and-Wait" Protocol



S1: Packet Admission Token Operator

S2: Minimum Path Duration Operator

Task Graph Reduction Step 1: Aggregation of Parallel Execution paths by T<sub>X</sub>



Task Graph Reduction Step 2: Aggregation of Repeated Packet Transmission by T<sub>Y</sub>



Task Graph Reduction Step 3: Aggregation of Tasks T<sub>1</sub> and T<sub>Y</sub>



## Mathematical Operations for Task Graph Reduction: Steps 1 and 2

Step 1: Aggregation of the Serial phases T<sub>2</sub>, T<sub>3</sub> by T<sub>X</sub> (Two-Way Response Time)

$$T_X = T_2 + T_3$$
,  $T_2, T_3$  are independent of each other : PDF  $f_X(t) = f_2(t) \bigotimes f_3(t)$   $\bigotimes$  Convolution Operator

Step 2: Number of Repeated Packet Transmissions

- a) Conditions for a Successful Packet and Ack Transmission
  - a1) Probability of correct Packet (P) and Acknowledgement (A) Transmission:

$$(1-q') = (1-q_2)(1-q_3)$$
, Where  $q_2$ ,  $q_3$  are the probabilities of Packet, Ack. Loss, resp.

a2) Probability that two-way response time is within the Timeout range To

$$q_X = P\{ T_X \le T_0 \} = \int_{t=0}^{T_0} f_x(t) dt$$

b) Probability for a Repeated Packet Transmission q

$$(1-q) = (1-q') q_X, q = 1- (1-q_2) (1-q_3) q_X$$

c) Number of Repeated Packet Transmissions until a Successful Packet Communication

$$q_n = P\{n \text{ Repeated Packet Transm.}\} = q^n(1-q), n=0,1,2,... (Geometric Distribution)$$

## Mathematical Operations for Task Graph Reduction: Steps 3, 4 and 5

Step 3: Aggregation of all Packet Transmissions until completion of a Successful Packet Transmission

where  $\delta(t)$  the Delta-Function (Dirac impulse), u(t) the unit step function.

Step 4: Aggregation of Packet Processing Time T<sub>1</sub> and Aggregated Packet Transmission Time T<sub>v</sub>

$$f_z(t) = f_1(t) \bigotimes f_Y(t)$$

Step 5: Resulting Single-Server Queuing System GI/G/1

After Aggregation of T<sub>1</sub> and T<sub>Y</sub> by T<sub>Z</sub> the Feedback Model is Identical with a GI/G/1 FIFO Queuing System.

### Modeling the Core Network by a General Queuing Network

- (a) One Queuing Station
- (b) Example Queuing Network



#### **Arrival and Service Processes**

 $GI_0 = (GI_{0i})$  Vector of exogenous arrival processes.  $\lambda_0 = (\lambda_{0i})$  Vector of exogenous arrival rates, where

 $a_{0i} = 1/\lambda_{0i}$  is the mean exogenous interar-

rival time at station i.

 $c_0 = (c_{0i})$  Vector of the coefficients of variation of

the exogenous arrival processes.

 $G = (G_i)$  Vector of service processes.

 $\mu = (\mu_i)$  Vector of service rates, where  $h_i = 1/\mu_i$  is

the mean service time at station i.

 $c_H = (c_{Hi})$  Vector of the coefficients of variation of

the service processes.

### **Basic Operations**

- (a) Packet Traffic Rates at each Queuing Station
  Solution of a linear System of Equations ("Conservation of Flows")
- (b) Splitting of Packet Streams ("Probabilistic Routing")



(c) Superposition of Packet Streams (Renewal Process Assumption)



### **Numerical Example**

#### **Queuing Network with 9 Queuing Stations**



#### **Numerical Example**

Results for Total E - E Average Flow Time f and Station Flow Time f<sub>4</sub>

Dependent on Coefficient of Variation cH of Station Service Times

and Validation by Simulations



## **Outline**

- 1. Distributed Real-Time Applications
- Communication Networks as Embedded Systems in Distributed Networked Control Systems (NCS) -A System Theoretic Approach
- 3. Application Examples
  - 3.1 SDN- and NFV-Based Control of RT Packet Flow Switching
  - 3.2 Latencies for Error-Control Protocols
  - 3.3 E-E Latency in Core Packet Networks
- 4. Conclusions

## 4. Conclusions

- Future Application Fields as Power/Traffic Grids or Integrated Manufacturing Systems lead to Distributed and Highly Complex Systems with High Requirements to Communications and Real-Time Performance ("Tactile Internet")
- Challenges Require Cooperative Approaches between Experts/Methodologies of Different Competences
- Complexity has to be Reduced by Structured Approaches as step-wise Top-Down, Bottom-Up, Decomposition/Aggregation Methods where Existing or Approved Results can be Applied
- Several Examples have been Presented for the Demonstration of the Feasibility of the Proposed Methodology