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1. Distributed Real-Time Applications

e Distributed Electric Power Control in the "Smart Grid"

— Feeding highly volatile el. Energy in the Power Grid
— Feeding Control Based on Phasor Sensing Data

e Smart Traffic Control ("Smart City")

— Intelligent Traffic Control
— Accident / Desaster Management

* Integrated Industry Process (“Industry 4.0")

— Production Automation
— Integration in Enterprise Business Processes

e Human Health Surveillance

— Sensoric Health Parameter Monitoring
— Case Management
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2. Communication Networks as Embedded System
in Network Control Systems (NCS)
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2. Communication Networks as Embedded System
in Network Control Systems (NCS)
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Communication Networks as Embedded System
in Network Control Systems (NCS

N

Methodology: System Theoretic Approach

a) "Top Down" Approach from Application Contexts to Communication Networks
— ldentifying Interactions between Entities, e.g., Control Loops, Manufacturing
Stations, ...
— ldentifying Communication Requirements between these Entities
— Specifying Communication Network Requirements between Distantly Located
Entities in Terms of: Throughput Rates, Latencies, etc. Quantitatively (Metrics)

b) "Bottum-Up" Approach from Communication Networks to Applications
— ldentifying Available Communication Media (wired, wireless, electric, optic, ...)
— Identifying Network Topologies and Network Technologies
— Specifying Network Services, Architectures and Protocols
Traffic and Performance Metrics
Appropriate Communication Network Models



2. Communication Networks as Embedded System
in Network Control Systems (NCS

Methodology: System Theoretic Approach

2. Performance Analysis

a) Experimental Approach through Experiments, Measurements and Simulation
— Design of a Physical Environment as Experimental Testbed
— Executing Experiments and Performing Measurements
— Development of System Simulation Models
Running Simulations for Typical System Scenarios
Extraction of Performance Results from Simulations

b) Analytical Approach through Mathematical Performance Models
— Identifying Existing/Approved Standard Queuing Models
— Developing Complex Queuing Network Models
Determination of the Main Application Requirements by Performance Metrics
— Task Graph Representations and Task Graph Analysis by
— Task Graph Reductions by Stepwise Aggregation of Tasks Probabilistically
— Aggregation of Specific Models into higher Layer Models
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Parallel Processes in Computation and Communication Control

- SDN- and NFV-Based Control of Real-Time Packet Flow Switching
Network Architecture
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Parallel Processes in Computation and Communication Control

- SDN- and NFV-Based Control of Real-Time Packet Flow Switching
Control Plane Actions and Data Plane MPLS Path Establishment
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Parallel Processes in Computation and Communication Control

- SDN- and NFV-Based Control of Real-Time Packet Flow Switching
Control Plane Actions and Data Plane MPLS Path Establishment

Data 1. Packet Arrival,

Base - Flow Detection
I l 2. DB Inquiry

SDN c1 Control Plane

Controller

® ______ @ R2 Data Plane

o~y

Origination = S

M, o R3
Edge Router TTe

Destination
Edge Router



Parallel Processes in Computation and Communication Control

- SDN- and NFV-Based Control of Real-Time Packet Flow Switching
Control Plane Actions and Data Plane MPLS Path Establishment
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Parallel Processes in Computation and Communication Control

- SDN- and NFV-Based Control of Real-Time Packet Flow Switching
Control Plane Actions and Data Plane MPLS Path Establishment
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Parallel Processes in Computation and Communication Control

- SDN- and NFV-Based Control of Real-Time Packet Flow Switching
Control Plane Actions and Data Plane MPLS Path Establishment
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Parallel Processes in Computation and Communication Control

- SDN- and NFV-Based Control of Real-Time Packet Flow Switching
Control Plane Actions and Data Plane MPLS Path Establishment
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Parallel Processes in Computation and Communication Control

- SDN- and NFV-Based Control of Real-Time Packet Flow Switching
Control Plane Task Graph
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Parallel Processes in Computation and Communication Control

« Modeling Protocol Control
Message Sequence Chart for "Send-and-Wait" Protocol with "Timeout Recovery"

(1) Successful Packet Transm. (2) Packet Loss/Error
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Parallel Processes in Computation and Communication Control

« Modeling Protocol Control
Message Sequence Chart for "Send-and-Wait" Protocol with "Timeout Recovery"

(3) Acknowledgement Loss/Error (4) Real Time Application
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Parallel Processes in Computation and Communication Control

Task Graph of "Send-and-Wait" Protocol
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Parallel Processes in Computation and Communication Control

- Task Graph Reduction Step 1: Aggregation of Parallel Execution paths by Ty
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Parallel Processes in Computation and Communication Control

- Task Graph Reduction Step 2: Aggregation of Repeated Packet Transmission by Ty

Packet Packet
Arrivals Buffer S

— | | |
A -O—O-
—H - 7]

Token Buffer

<
<

- Task Graph Reduction Step 3: Aggregation of Tasks T; and Ty

Packet Packet
Arrivals Buffer

— O

A T

13



Parallel Processes in Computation and Communication Control

- Mathematical Operations for Task Graph Reduction: Steps 1 and 2

Step 1 : Aggregation of the Serial phases T2, Tz by Tx (Two-Way Response Time)
Tx=Ta+T;3, T,,Ts are independent of each other : PDF  fx(t) = f2(t) &) f3(t)
@  Convolution Operator
Step 2 : Number of Repeated Packet Transmissions
a) Conditions for a Successful Packet and Ack Transmission
al) Probability of correct Packet (P) and Acknowledgement (A) Transmission:

(1-9") = (1-92) (1-93) , Where g2, g3 are the probabilities of Packet, Ack. Loss, resp.
a2) Probability that two-way response time is within the Timeout range To

ae=P{Tx <To} = [, fu(t)dt

b) Probability for a Repeated Packet Transmission q

(1-9) = (1-9) ax, g = 1- (1-q2) (1-g3) ax

c) Number of Repeated Packet Transmissions until a Successful Packet Communication

qn = P{n Repeated Packet Transm.} = q"(1-q) , n=0,1,2,... (Geometric Distribution)

14



Parallel Processes in Computation and Communication Control

- Mathematical Operations for Task Graph Reduction: Steps 3, 4 and 5

Step 3 : Aggregation of all Packet Transmissions until completion of a Successful Packet Transmission
CRV Tyln =n-TO + Tx|Tx<=To, N>=0
CPDF  fi(t|Tx<=To) = fu(t)[1 - u(t- To)]

CPDF  fy(tn) = &(t- nTo)X)flt [Tx<=Te), n>=1

00 (03]
PDF i) = Z g fy(tin) = 2 O f(t-NTo|Tx <= To)
n=0 n=0

where (t) the Delta-Function (Dirac impulse), u(t) the unit step function.

Step 4 : Aggregation of Packet Processing Time T1and Aggregated Packet Transmission Time T,

fa(t) = fa(t) ® fv(t)
Step 5 : Resulting Single-Server Queuing System GI/G/1

After Aggregation of T1 and Ty by T the Feedback Model is Identical with a GI/G/A FIFO Queuing System.

15



E - E Latency in Core Packet Networks

Modeling the Core Network by a General Queuing Network

(a) One Queuing Station
(b) Example Queuing Network

(4;,¢c;)

composition  queue server decomposition
point point

(b)

Arrival and Service Processes

Gly = (Gly;)
Ao = (Noi)
co = (Coi)
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K= ()

¢ = (cu;)

Vector of exogenous arrival processes.
Vector of exogenous arrival rates, where
ag; = 1/Ag; is the mean exogenous interar-
rival time at station i.

Vector of the coefficients of variation of
the exogenous arrival processes.

Vector of service processes.

Vector of service rates, where 4; = 1/y; is
the mean service time at station i.

Vector of the coefficients of variation of
the service processes.



E - ELatency in Core Packet Networks

Basic Operations
(a) Packet Traffic Rates at each Queuing Station

Solution of a linear System of Equations ("Conservation of Flows")

(b) Splitting of Packet Streams ("Probabilistic Routing")

(c) Superposition of Packet Streams (Renewal Process Assumption)
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E - E Latency in Core Packet Networks

Numerical Example

Queuing Network with 9 Queuing Stations
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E - E Latency in Core Packet Networks

Numerical Example

Results for Total E -E Average Flow Time f and Station Flow Time f,
Dependent on Coefficient of Variation cH of Station Service Times

and Validation by Simulations
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Future Application Fields as Power/Traffic Grids or Integrated Manufacturing Systems
lead to Distributed and Highly Complex Systems with High Requirements to
Communications and Real-Time Performance ("Tactile Internet")

Challenges Require Cooperative Approaches between Experts/Methodologies of
Different Competences

Complexity has to be Reduced by Structured Approaches as step-wise Top-Down,
Bottom-Up, Decomposition/Aggregation Methods where Existing or Approved Results

can be Applied

Several Examples have been Presented for the Demonstration of the Feasibility of the
Proposed Methodology



