

Technische Universität München Lehrstuhl für Kommunikationsnetze Prof. Dr.-Ing. W. Kellerer

44. ITG Workshop der Fachgruppe 5.2.4 am 15.11.2013 an der TU München

Dynamic Virtual Network Embedding (Re-Embedding)

Andreas Blenk andreas.blenk@tum.de

Motivation

- Users demand for different types of services and content, e.g., (Video, Office Applications, etc.)
- Data of different services still transmitted on best effort basis
- Current architecture called to be ossified
- Virtualization helped address myriad problems [1]

- SP demands service specific topology
- SP manages virtual resources according to service demands
- Virtualization allows to innovate, e.g., wide area multicast IPTV [1]

- Virtual Network Embedding algorithms optimize resource allocation (Utilization, QoS)
- Most embedding algorithms assume static virtual network demands
- But VN demands should change over time \rightarrow Re-Embedding

Re-embedding Problem Formulation

- InP has to re-embed VNs (Re-Embedding)
- Leads to Reconfigurations (Link migrations, Node migrations)
- Find an embedding that avoids reconfigurations
- Our solution: Assume knowledge about traffic patterns (future demands)

Sandvine – Global Internet Phenomena Report

O O O O Streaming for Gold O O O O

How the U.S. watched the 2012 Summer Olympics online

[1] Sandvine, "Global Internet Phenomena Report", 2012

- Traffic Patterns
 - Based on spatial and temporal user behavior
 - Periodically repeating
 - Partly predictable
- Impact of reconfigurations depends also on technology
 - Link migrations in MPLS Networks [1]
 - Controller migrations in OpenFlow based Networks
- Investigation of different embedding algorithms
 - Pure load balancing (PLB)
 - Load balancing + Considering reconfiguration (LR)
 - Load balancing + Considering reconfiguration + Knowledge about demand progress (TP)

- Physical Network
 - 12 Nodes
 - 14 Links
 - Unlimited Link Capacity
 - Unlimited Node Capacity
- 6 Virtual Networks
 - 6 to 12 Virtual Nodes
 - No Node Demands
 - Link Demands varie randomly from 4 to 200
- 75 Runs
- Unsplittable Flows

Optimization Objective: Balanced Link Load + Avoiding Link Migrations

- Equal solution in terms of utilization
- TP and LR decrease link migrations

[1] Andreas Blenk and Wolfgang Kellerer. "Traffic pattern based Virtual Network Embedding", to be published in Proceedings of the 2013 ACM CoNEXT Student Workshop

• Setup: Accepting 5% higher link utilization

• Improves amount of reconfigurations

- Virtualization offers more flexibility but may introduce additional reconfiguration overhead
- First re-embedding approach based on traffic patterns
- \rightarrow Assume to have knowledge about future demands
- First simulation results
 - Minimize reconfigurations, i.e., virtual link migrations
 - Algorithm does not diminish network utilization
 - \rightarrow Potential for further improvements
- Outlook
 - Integrate missing constraints (Capacity, Real Patterns)
 - Integrate uncertainty into the patterns
 - Analyze reconfigurations according to use case/architecture (SDN)
 - Focus on control plane architectures considering reconfigurations

Questions?

Thank you!