

Visual and thermal low-altitude aerial imagery for real-time monitoring

by: Saeed Yahyanejad

Outline

- 1. Motivation
- 2. Challenges
- 3. Problem definition
- 4. Orthorectified mosaicking of UAV images (A quick overview)
- 5. Multispectral mosaicking (Main focus of this presentation)
- 6. Conclusion
- 7. Future work

Motivation

- Advances in computer vision and aerial imagery.
- > Small-scale UAVs easy to deploy.

- Provide overview images similar to Google Maps and Bing Maps, but with higher temporal and spatial resolution.
- Applications of aerial images: environmental monitoring, surveillance, border control, detection, and disaster management.

Goal: Generate overview image

Challenges of aerial image mosaicking

- ➤ Non-planar scene and low altitude
- Point of view in image acquisition
- Overlapping ratio

Panorama: extension to FOV

Mosaic: extension to POV

Problem definition: (How to mosaick?)

Geosense. http://www.geosense.com.my/sample_uav_image/Index.htm

Problem definition (A quick overview)

1. How to use the metadata (IMU & GPS) for mosaicking?

Contribution: A hybrid approach: find adjacent images + approximate positions and orientation

2. How to produce orthorectified mosaics without using the metadata?

Contribution: Study the sources of error + minimize these accumulated errors (low overlap > no global optimization)

Problem definition (main focus of this presentation)

3. How to perform a robust interspectral registration between images taken from heterogeneous sensors (e.g., thermal and visual cameras)?

Contributions:

- General lens distortion correction of thermal cameras
- Introduction of feature descriptors for robustly identifying correspondences between images of different spectrums
- Registration of image mosaics
- Registration based on depth maps

Orthorectified mosaicking of UAV images

Mosaic O_n is constructed incrementally

$$O_i = Merge(O_{i-1}, I_i')$$

where O_0 is a zero matrix & I_i is a transformation of original image I_i by:

Projective transformation:

$$ilde{\mathbf{H}}_{I_i,I_i'} = egin{bmatrix} h_{11} & h_{12} & h_{13} \ h_{21} & h_{22} & h_{23} \ h_{31} & h_{32} & 1 \end{bmatrix}$$

Orthorectified mosaicking of UAV images

Incremental mosaicking:

1) Hybrid method

Reduce the search space:

- 1. Place the images based on camera pose
- 2.Use imageprocessing to fine tune

2) Loop-independent mosaicking

Major sources of error in pairwise mosaicking:

- 1. Unleveled features
- 2. Lens distortion
- 3. Projection and transformation model

Unleveled features - Disparity implies the depth

Loop-independent mosaicking result

No error control

With considering sources of error

Multispectral aerial imaging

multiple heterogeneous sensors - needs alignment

Visual camera

Thermal camera

Multispectral aerial imaging

General goal: Register visual and thermal images Challenges:

 Different features because of daylight, IR radiation, fog, smoke, water and vegetation

Partial goal: Correct thermal lens distortion

Challenges:

Conventional patterns (e.g. chessboard) is not easily applicable for thermal

Correct thermal lens distortion

conventional chessboard pattern

Easy to reimplement & Accurate

IR radiation, conveniently generated by a heat lamp

Correct thermal lens distortion

Normal image of the pattern:

Result of our assembly:

$$O = \frac{\sum_{i} I_{i} \cdot \lambda(I_{i})}{\sum_{i} \lambda(I_{i})}$$

Now it is possible to feed it in existing calibration SW

Adaptive thresholding: Erosion + Convex hull: Dilation + Convex hull: Centers of blobs:

Interspectral registration - State of the art

Interspectral registration (e.g., finding correspondences

between thermal and visual images)

> R. Istenic, et al.

Thermal and visual image registration in Hough parameter space.

14th International Workshop on Systems, Signals and Image Processing (IWSSIP), pages 106-109, 2007.

G. Schaefer et al.

User Centered Design for Medical Visualization, chapter Automated overlay of infrared and visual medical images,

pages 174-183. IGI Global, 2008.

State of the art

➤ E. Corias, J. Santamaria, and C. Miravet. A Segment-based Registration Technique for Visual-IR Images. Optical Engineering, (1):1-29, 2000.

➤ J. W. Joo, J. W. Choi, and D. L. Cho.

Robust registration in two heterogeneous sequence images on moving objects.

In Proceedings of Sixth International Conference of Information Fusion, pages 277-282, 2003.

Interspectral registration pipeline

Interspectral registration – single pair

- > Scale-, rotation-, and illumination-invariant
- Manipulate existing descriptors (e.g., SIFT or SURF)
- Robust Features Along the Edges (RFAE)

$$D_E(x,y,\sigma) = (G(x,y,k\sigma) - G(x,y,\sigma)) * B \circ S(I(x,y),\theta),$$

where B is the binary operator and S is the Sobel operator

789**SRUFFAIE** features

Succeitedful Registration

Single pair registration – Satellite sample

RISALER Sufcailes stiffel legistriation

Bands 1 and 4 of the Landsat satellite image of Iowa state (image source: NASA/USGS).

Single pair registration – Human sample

RISALER Sufcapites of find legistria transion

Visual and thermal images of humans

Interspectral registration evaluation – single pair

Successful registration ratio

	SIFT	SURF	U-SURF	RFAE	SURF+ RFAE
Satellite (low deviation)	24/24	24/24	24/24	24/24	24/24
Satellite (high deviation)	7/10	6/10	9/10	10/10	10/10
Human	0/16	0/16	2/16	12/16	12/16
Surveillance	1/14	2/14	4/14	12/14	12/14
UAV	13/20	14/20	2/20	13/20	17/20

Average quality (Q values are calculated based on coverage and sparsity of features)

	SIFT	SURF	U-SURF	RFAE	SURF+ RFAE
Satellite (low deviation)	72 %	66 %	71 %	53 %	68 %
Satellite (high deviation)	45 %	41 %	49 %	46 %	52 %
Human	0 %	0 %	1 %	8 %	8 %
Surveillance	1 %	3 %	4 %	18 %	19 %
UAV	9 %	10 %	1 %	6 %	11 %

Interspectral registration pipeline

Register the mosaics if they have enough overlaps

$$R(\tilde{\mathbf{x}}_{V_2}, \tilde{\mathbf{x}}_{T_2}) = R(\tilde{\mathbf{H}}_{I_{V_1}, I_{V_2}} \tilde{\mathbf{x}}_{V_2}, \tilde{\mathbf{H}}_{I_{T_1}, I_{T_2}} \tilde{\mathbf{x}}_{T_2})$$

Interspectral registration pipeline

> Exploit the 3D structure - rough depth map

> Exploit the 3D structure – full reconstruction

3D model from 25 visual images

3D model from 25 thermal images

Project 3D to 2D – equivalent depth map

Perpendicular base point on plane

$$\mathbf{P}_{n} = \mathbf{P}_{0} - \frac{(ax_{0} + by_{0} + cz_{0} + d)}{a^{2} + b^{2} + c^{2}} \mathbf{n}$$

Distance of the point to the plane

$$\mathbf{d}(\mathbf{P}_{0}, \boldsymbol{\pi}) = |\mathbf{P}_{0} - \mathbf{V}_{0}| \cos \theta = \frac{\mathbf{n} \cdot (\mathbf{P}_{0} - \mathbf{V}_{0})}{|\mathbf{n}|} = \frac{ax_{0} + by_{0} + cz_{0} + d}{\sqrt{a^{2} + b^{2} + c^{2}}}$$

SURF over depth map

Multiple pair registration - depth map sample

Surf failed - same sensor but different seasons

Alignment sample – Multispectral image

Conclusion

We construct high-resolution mosaic images with high geometric accuracy from a set of images taken from small-scale UAVs.

- Present a hybrid approach which combines metadata and the image data (increased accuracy and 70% computational time reduction)
- Quantify the influence of different parameters studying the sources of error in pairwise mosaicking (increased accuracy with the same complexity)
- Robust interspectral image registration
 - A general method (RFAE) which exploits the existing scaleinvariant feature extraction methods such as SIFT and SURF
 - Register the image mosaics (complexity n times more, for n images)
 - Use depth maps of a target scene for the feature extraction (For a rough depth map 4n times more, for n images)

Future work

- ➤ Advanced UAVs: handle higher resolution or videos
- ➤ Hybrid approach: improve optimization (heuristic)
- > Loop-independent mosaicking: generalize in presence of loop
- ➤ Interspectral registration: more complex features (e.g., classified areas or object can be used, SGM)
- ➤ System level future works: Underlying architectures for deployment of multi-UAV, autonomous planning and deployment, communication structure, and optimal coverage methods

Questions?

Thank you for your attention!