

Chair of Future Communication Faculty of Computer Science Prof. Dr. K. Tutschku

Modeling and Evaluation of the Influence of Networks on HTTP Video Streaming

- HTTP Media Streaming in Comparison
- Mobile Network Architecture Differences
- Playback Modeling and Strategies
- Measurement Testbed
- Testbed Evaluations
- Conclusion
- Work in Progress

Streaming and HTTP content grows

TCP based streaming is a large factor in traffic mix (fixed access peak ratio at ~54%)

	Upstream Downstr		Downstrea	m	Aggregate	
Rank	Application	Share	Application	Share	Application	Share
1	Facebook	30.85%	НТТР	2 7.46 %	НТТР	27.31%
2	НТТР	26.24%	YouTube	19.99 %	Facebook	19.29%
3	SSL	6.05%	Facebook	17.62%	YouTube	18.23%
4	YouTube	6.01%	Windows Update	5.17%	Windows Update	4.70%
5	BitTorrent	3.83%	Android Market	4.09 %	Android Market	3.75%
6	Ares	3.45%	Flash Video	2.96 %	Flash Video	2.66%
7	00voo	2.57%	SSL	1 .97 %	SSL	2.48%
8	Skype	1.81 %	RTSP	1.89%	RTSP	1.67%
9	Gmail	1 .49 %	Shockwave Flash	1.75%	Shockwave Flash	1.63%
10	Windows Update	1.48 %	MPEG	1.67%	MPEG	1.53%
	Тор 10	83.77%	Тор 10	84.57%	Тор 10	83.26%

SOURCE: SANDVINE NETWORK DEMOGRAPHICS

🐼 sandvine[®]

Top Peak Period Applications by Bytes - North America, **Mobile Access**; Source: Global Internet Phenomena Report 2011

TCP/HTTP Media Streaming

	RTP	Progressive/simple HTTP	Adaptive HTTP
Appearance	Classical "textbook" approach & wisdoms	Reality today,	heavily used
Transport Protocol	UDP	TCP (one	to many)
Transport Level Flow Control & Congestion Control	Explicit by server- application	Implicit	(TCP)
Control Information Exchange	Explicit (RTCP)	Implicit	(TCP)
Application Layer Flow Control	Server-side	Server-side pacing possible	Server and client-side pacing possible
Playback Control	Server-Side, pushed	Client-Sid	e, pulled

- TCP/HTTP originally not intended for video streaming
- Network layers influence new streaming approaches differently
- Qualitative evaluations
 - How and what to measure and compare to other protocols?
 - Which metrics to use?

Networks and Mobile Networks

- 3GPP architectures and protocols are unlike wired access networks
 - Deep mobile network protocol stacks
 - Tunneling concepts
 - Separate user and control plane
 - Interplay and time scales influencing application layer
 - Streaming that works for wired access might not in mobile nets

cation

Chair of Future Com

endowed by

Modeling Playback through Buffering

- Why Buffering?
 - Decoder would need only milliseconds of data at once
 - Network jitter and VBR cause variations in the received data rate
 - Playback stalls when buffer runs out of data \rightarrow large buffer!
 - Playback should start as soon as possible → small buffer!
- Model playback as a simple buffer fill level equation:

$$buffer(t) = \sum_{0}^{t} data_{rcvd} - \sum_{0}^{t} data_{played}$$

- Buffer draining only way to influence the process from the client side
 - Initial playback start time and restart time after empty buffer
 - ➔ Governing factors in any streaming playback strategy

cation

Chair of Future Com

endowed by

User Experience And Buffer Strategies

- Buffer strategy influences user experience
- Parameters (e.g.)
 - Start-up delay (
 - Number and length of stalls during playback (

- Range of possible user-visible trade-offs
 - Minimal buffering ("Playback stalling")
 - start immediately, stall immediately
 - Optimal optimal buffering ("Initial playback delay")
 - download exactly as much as you need to play back without any stalls
 - Impossible to implement -- requires perfect knowledge
 - YouTube strategy
 - Become more cautious on stalls \rightarrow buffer increases with stall frequency

• Firefox HTML5 strategy

- Factor in download and playback rates
- Less but longer stalls

Ca Chair of Future Com endowed by

cation

Chair of Future Com

endowed by

YouTube Flash Player Strategy

- Start playing when buffer contains ≥2s video data
- If stalled, buffer ≥5s video data before restarting
- Compromise between small waiting times and number of stalls

HTML5 Video Strategy in Firefox 4

- If $MA_{transmission} > MA_{bitrate}$ then buffer 20s of video data or for 20s, else 30s
- Limits stalling to few but long events, requires large buffer

Measurement Testbed

Measurement Pass 1: Recording

 Request content from local or Internet streaming service, download through network emulator

–Network emulator QoS models could represent different radio technologies, core network architectures, etc.

- Record network trace
- Decode video, record playback trace

icatio

Chair of Future Comn

Measurement Pass 2: Playback Emulation

- Compare packet and decoder traces according to the general • buffering model
- Can apply multiple playback strategies to the same trace! •
- Evaluate for stalling statistics: Stalling duration, frequency, ... ٠
 - Potential input for further detailed QoE estimations ٠

Playback Strategy Trends: Total Stalling

Playback Strategy Trends: Stall Frequency

Conclusion

- New TCP-based streaming protocols are on the rise and will be a major traffic source
 - Generic evaluation and comparison approach necessary to cope with the multitude of different "protocols" and behaviors
 - TCP streaming requires different performance metrics compared to RTP
 - Approach: Stalling characteristics
- Choosing the right playback model can make a huge difference on the quality of the playback process
 - Currently used models (FF, YT Flash) may not be the best choices
 - Mobile viability only as an afterthought
- Simple HTTP-based streaming approaches have difficulties adopting to networks with high or varying latency or loss (e.g. mobile networks)
 - TCP features could prevent timely delivery of data

Work in Progress

- Evaluation of a mobile operator core network dataset
 - Signaling and control traffic behavior and overhead?
 - Life cycle of PDP contexts
 - ➔ Has streaming traffic a noticeable impact on the core network? How can it be modeled?
- Testbed emulation and simulation of adaptive streaming
 - Variations: DASH, Smooth Streaming, HTTP Live Streaming, ...
 - Explore universal adaptivity strategies, trade-offs and quality metrics
 - Testbed Emulation/Simulation of UMTS/LTE

Questions?

Thank you for your attention.