A Context-Aware Method for Spontaneous Clustering of Dynamic Wireless Sensor Nodes

Raluka Marin-Perianu
Self-organization

- Self-organization in wireless ad-hoc and sensor networks
 - From an initially unstructured network, build a structure in a distributed manner
 - Decisions are based on networking characteristics (e.g. link quality), node capabilities (e.g. amount of storage), probabilistic...
 - Purpose: efficient networking, data storage, querying
 - Operation: MAC, routing, transport, service discovery
 - Examples of structures: P2P overlay networks (e.g. DHT), hierarchical (e.g. spanning tree), hybrid (e.g. hierarchical rings, local hierarchies – clusters)
Self-organization

- Wireless ad-hoc and sensor networks – self-organization at the **application** layer
 - Rely on operational networking protocols
 - Build a structure in a distributed manner, based on **context information** (e.g. moving together) – virtual representation of the structures present in the real world
 - Purpose: provide a service for the application
 - Challenge: how to build stable clusters when the context information changes in time?
Application: transport and logistics
Application: Body Area Networks

- Wearable computing – nodes placed on the same person
- Clustering of nodes based on movement of people
 - Automatic identification of the sensors worn
 - Contribute to the activity monitoring and recognition
 - Can form a secure network
Phases of self-organization

1. Context-recognition algorithm
2. Communication of context information
 • Context is permanently evaluated and communicated
3. Algorithm of self-organization based on context information
 • Takes into account the variability of context information
Context-recognition algorithm – moving together

Tilt switches
- Binary information over the status of the device (moving/not moving)
- We use the number of contacts per time unit

Accelerometers
- Measures the acceleration on three axis
- We use the magnitude of the acceleration vector:

\[\| \mathbf{a} \| = \sqrt{a_x^2 + a_y^2 + a_z^2} \]
Context-recognition algorithm – moving together

- Sampling of movement sensors
- Communication of movement data
- Computation of the correlation coefficient

Corr = 0.896
Context-recognition algorithm – moving together

Experimental Settings
Context-recognition algorithm – moving together

Accelerometers moving together
Context-recognition algorithm – moving together

Accelerometers moving separately
Context-recognition algorithm – moving together

Accuracy

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Setting</th>
<th>Movement type</th>
<th>Mean</th>
<th>Stdev</th>
<th>Accuracy [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilt switch</td>
<td>RTI</td>
<td>joint</td>
<td>0.641</td>
<td>0.087</td>
<td>95.89</td>
</tr>
<tr>
<td>Tilt switch</td>
<td>RTI</td>
<td>separate</td>
<td>-0.017</td>
<td>0.249</td>
<td>99.45</td>
</tr>
<tr>
<td>Tilt switch</td>
<td>car</td>
<td>joint</td>
<td>0.700</td>
<td>0.121</td>
<td>93.77</td>
</tr>
<tr>
<td>Tilt switch</td>
<td>car</td>
<td>separate</td>
<td>0.086</td>
<td>0.208</td>
<td>95.50</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>RTI</td>
<td>joint</td>
<td>0.817</td>
<td>0.106</td>
<td>99.31</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>RTI</td>
<td>separate</td>
<td>0.009</td>
<td>0.124</td>
<td>100</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>car</td>
<td>joint</td>
<td>0.796</td>
<td>0.102</td>
<td>98.93</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>car</td>
<td>separate</td>
<td>-0.003</td>
<td>0.127</td>
<td>100</td>
</tr>
</tbody>
</table>

• Body Area Networks - coherence function [2]
 – A number in [0,1] that indicates whether two signals are correlated at a particular frequency
 – Accuracy 70% - 87.5%

Algorithm of self-organization - Tandem

- Assumption: each node runs a **context recognition algorithm** for all the neighbours
 - Provides a number on a scale, the confidence value
 - Coherence function \([0:1]\)
 - Correlation coefficient \([-1:1]\)
 - Permanently evaluates the context
 - The confidence value changes in time
 - The algorithm has a certain accuracy
 - False negatives and false positives for the perceived shared-context
Algorithm of self-organization - Tandem

Follows the idea of a greedy algorithm, with the characteristics:

1. Incorporate dynamics
 - Merging and splitting of clusters depending on:
 - Topology changes
 - Context changes

2. Stability
 - The periodic re-evaluation of shared context may lead to unstable clusters
 - Analyze the confidence value for a longer period of time
 - Tradeoff between stability and delay
Algorithm of self-organization - Tandem

Context-aware self-organization

- Context-aware self-organization – a variant of the classical clustering, with different applications and requirements
 - Virtual representation of structures present in the real world
 - **Passive** approach, does not act, but only tries to understand
- **Active** self-organization: wireless sensors and actuator networks
 - **Build and control** the structures of the real world
Collaborative unmanned vehicles

- Equip vehicles with wireless sensor and actuator nodes.
- Make the vehicles coordinate their motion, e.g. follow a leader and thus maintain a formation.
FollowMe!

FollowMe!

- For a presentation and demonstration video, please visit:
 http://www.youtube.com/watch?v=ZzWYO5dbo1M