

On Resource Allocation in Cooperative Relaying

Nikolaj Marchenko

Klagenfurt University Institute of Networked and Embedded Systems Mobile Systems Group

Cooperative Diversity

Form of space diversity with distributed transmission and signal processing

Cooperative Relaying

Cooperative Relaying

Deterministic

Predefined usage of coop. relays

Improve SNR (long term)

Simultaneous transmission

Sequential transmission (MAC routing)

Probabilistic

Use only if direct transmission fails

Mitigate small-scale fading (short-term)

(R

Cooperative Interference

– So what is with resource allocation for Probabilistic Cooperative Relaying?

On one side:

Relaying should be relative fast (otherwise time-diversity might work just fine)

→ Allocate resources for relaying to avoid contention / collisions

But on the other side:

If direct communication succeeds – resources allocated for relaying are wasted

 \Box Do not allocate resources to avoid their waste

N. Marchenko, C. Bettstetter and Evsen Yanmaz, "On Resource Allocation in Proactive Cooperative Relaying", CoCoNet'09

Overall Throughput

(1)
$$T = T_{1}(1 - p_{1}) + T_{2}(1 - p_{2})$$

(2) $T_{A} = \frac{1}{2}(T_{1}(1 - p_{1}) + T_{2}(1 - p_{2})) + \frac{1}{2}\frac{T_{1}}{\alpha}((1 - p_{1}) + \frac{1}{2}p_{1}(1 - p_{r}))$
(3) $p_{r} = 1 - (1 - p_{RL_{1}})(1 - p_{RL_{2}})$
(4) $\alpha = 1 + p_{1}$

Overall throughput

Efficiency of resource utilization
(5)
$$E_A = -\frac{T_{D_1}^{CR} - T_{D_1}}{T_{D_2}^{CR} - T_{D_2}}, \quad T_{D_1}^{CR} \ge T_{D_1}$$

Value of E _A	Explanation
$E_{A} > 1$	CR improves L_1 more than degrades L_2
$E_A = 1$	CR improves L_1 and degrades L_2 equally
$0 < E_A < 1$	CR improves L ₁ but degrades L ₂ more

Efficiency of CR

Select a relay by additional traffic information

Thanks!

