
Aeronautical Ad Hoc Networks

F. Hoffmann, D. Medina 27.10.2008

Outline

- → Concept
- → Internet connectivity
- → A2A NET/MAC/PHY

Scenario 1: Continental Airspace

- Uncoordinated aircraft movement
- → Highly dynamic topology
- → Very dense topology
 - ✓ Up to 30 000 flights per day
 - → Ca. 2 000 simultaneous flights

- → Application:
- Extension of coverage via multi-hop relays beyond coverage of terrestrial base stations

Scenario 2: Oceanic/Remote Airspace

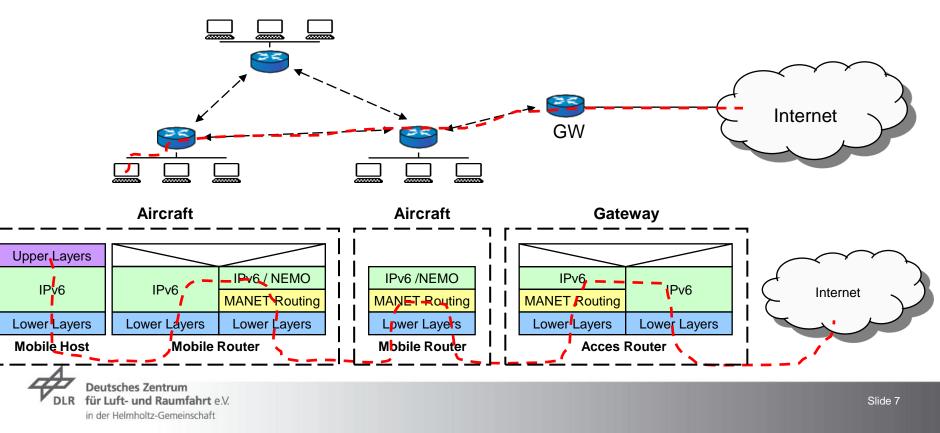
- Coordinated aircraft movement
- ✓ Very stable (quasi-static) topology
- → Lower connectivity
 - → Ca. 1 500 flights per day
 - → Max. 300 simultaneous flights

- → Application:
- → Extension of terrestrial coverage
 - → Ad hoc network as alternative to satellite communications
- → Sharing of satellite links among aircraft

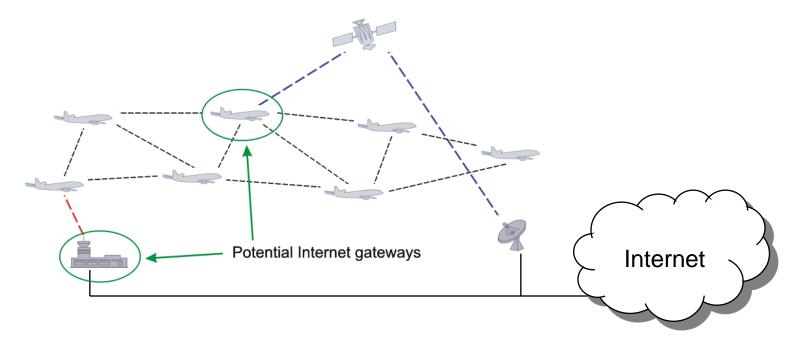
Node characteristics

- → Limited battery power
- → GPS not always available
- → Short transmission range
- → Random motion
- → One user per node

- → ,Unlimited' battery power
- → GPS always available
- Huge transmission range (over 200 nautical miles)
- → Linear uniform motion
- ✓ Many users (e.g. passengers) per node

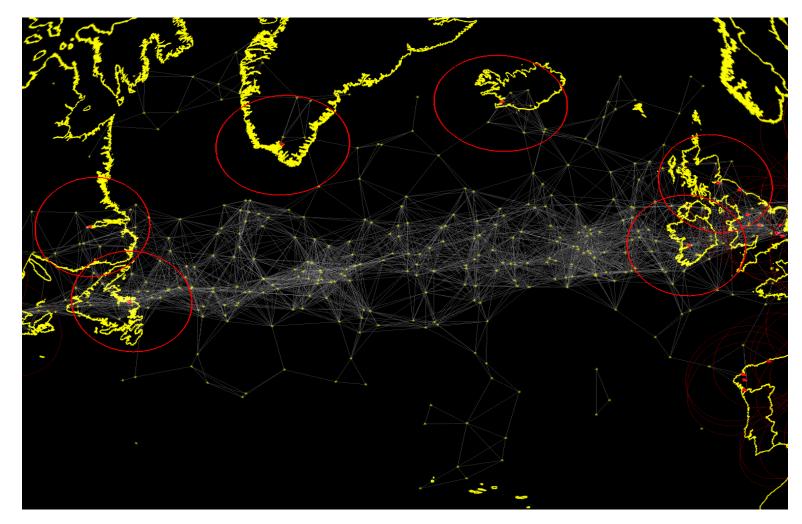

Outline

- → Concept
- → Internet connectivity
- → A2A NET/MAC/PHY



Aircraft as Mobile Networks

- → Internet Gateways (IGWs) connect MANETs to Internet
- Multi-hop communication between aircraft and GW is performed by a MANET routing protocol below IP
- → Transparent to IP mobility protocol (NEMO)


Internet Gateways

- GWs may exhibit significantly different characteristics concerning bandwidth, delay, reliability
- → Traffic is concentrated around the GWs
- → IGW selection crucial for overall network performance!

Internet Gateway Deployment Example

Internet Connectivity: Key Questions

- 1. What GWs are reachable?
 - → GW Discovery
- 2. What is the best GW?
 - → GW Selection
- 3. What aircraft should act as opportunistic GW?
 - → GW Election

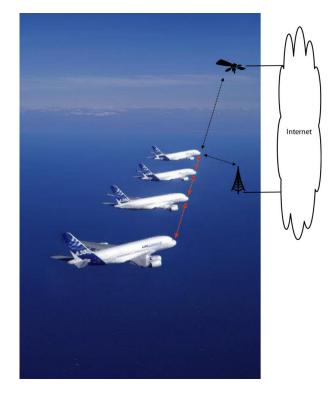
Internet Gateway Discovery

→ Proactive

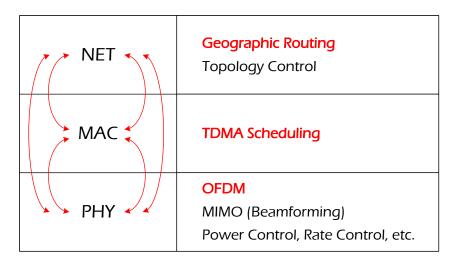
- → Based on periodic flooding of IGW advertisements (ADVs)
- → Constant overhead
- → Suited to highly mobile environments
- → Reactive
 - Based on on-demand IGW solicitations
 - → Overhead scales with no. of sources
 - ✓ More suitable for less mobile networks
- → Hybrid
 - → Flooding of ADVs limited to region around GW
- → Here: Exploitation of position information for efficient flooding of ADVs

Internet Gateway Selection

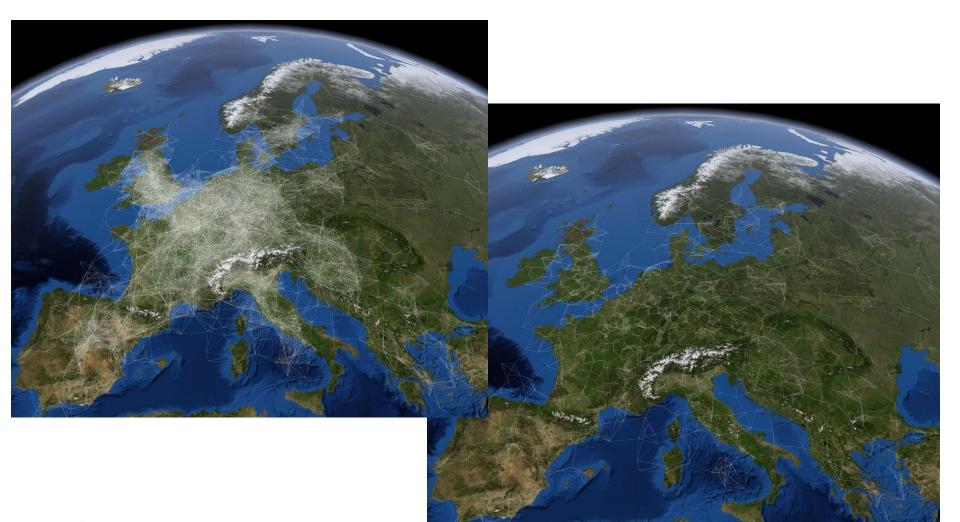
- ✓ What is the best GW (regarding throughput, delay, etc.) ?
- → Approaches proposed so far mainly based on
 - → Hop Count
 - → Gateway Utilization
 - → Compound Metrics
 - \neg e.g. α · HopCount + β · GWUtilization
- → But: Cannot adapt to different traffic situations
- → Improvement of GW selection by
 - Use of *delay* as selection metric: natural combination of hop count and traffic load
 - → Cooperation between gateways



Outline


- → Concept
- → Internet connectivity
- → A2A NET/MAC/PHY

NET/MAC/PHY Design for Aircraft-to-Aircraft (A2A) Communication


Crosslayer A2A Protocol Stack

Adapt 802.16 Mesh for A2A?

Topology Control

Topology control algorithms

- Precursor works:
 - → In the context of Slotted ALOHA (Kleinrock, Hou, Zander)
 - → Tradeoff between spatial reuse and forward progress
 - → Goal: Optimize expected forward progress of packets
- → Structures from computational geometry...
 - → Planar subgraphs for geographic routing (e.g. Gabriel graph)
 - → Yao Graph
- \neg In the context of TDMA:
 - Moscribroda et al. [MobiHoc'06] obtained scaling laws for the "scheduling complexity of an arbitrary topology" (schedule length) as the network grows
- → Our approach: "Back to the roots"
 - → Apply the tradeoff concept to TDMA multihop wireless networks

TDMA algorithms

- → Desirable features of a TDMA algorithm [Grönkvist]
 - **7** Distributed
 - → No central controller
 - → Only local information required
 - → Traffic sensitive
 - → Each link has a different traffic demand
 - → Density adaptive
 - → SINR based
 - → Protocol interference model does not reflect reality well
 - Exploits directional antennas
- → Examples:

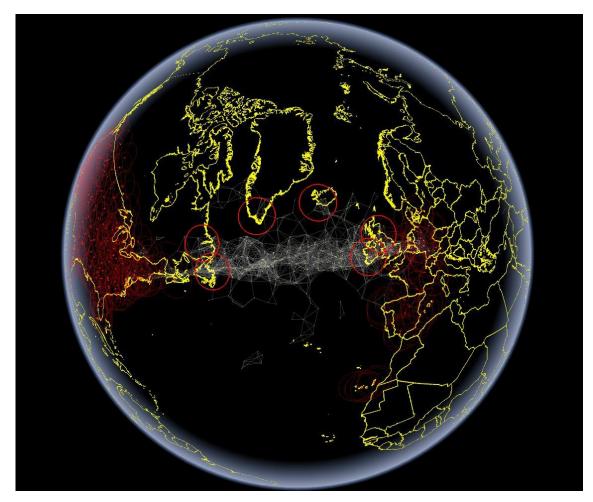
 - → ROMA [Bao and Garcia Luna Aceves]

Topology Control in TDMA Multihop Wireless Networks

→ Objective:

Control the routing topology to maximize the **end-to-end** throughputdelay performance of TDMA

- → Existing TC algorithms, e.g. Cone-based Topology Control (CBTC)
 - → are based on geometrical considerations
- → Basic idea:
 - Use feedback from the TDMA layer to adapt the routing topology, based on some scheduling complexity metric
 - e.g. control the **neighborhood** (knowledge range) of each node so that all links can be scheduled within a given fixed-size frame



Some notes...

- ✓ With TDMA-based Topology Control...
 - → Topology may change frequently (on a frame by frame basis!)
 - Maybe only appropriate when using localized routing (geographic routing)
- In particular with directional antennas, TDMA-based TC is expected to significantly outperform geometry-based TC

Questions?

