Design of a Cognitive Radio-ARchitecture Based on Optimized Time-FreqUency-SignAL Representations (CAROUSAL)

M.Sc Rana Al Halaseh M.Sc Mridula Sharma Prof. Dr. sc. techn. Dirk Dahlhaus

27.03.2014

U N I K A S S E L V E R S I T 'A' T

ITG FG 5.2.4 "IP and Mobility" workshop on Wireless Sensor Networks

1

Design of a Cognitive Radio-ARchitecture Based on Optimized Time-FreqUency-SignAL Representations (CAROUSAL)

German Federal Ministry of Education and Research (BMBF)

Duration: 2013 – 2016

U N I K A S S E L V E R S I T 'A' T

Project leader - ESK	Partner - UKAS
Fraunhofer-Einrichtung für Systeme	Universität Kassel
der Kommunikationstechnik ESK	Fachbereich Nachrichtentechnik
DrIng. Erik Oswald	Prof. Dr. sc. techn. Dirk Dahlhaus
M.Sc. Alexander Auer	M.Sc Rana Al Halaseh
Hansastraße 32	M.Sc Mridula Sharma
D-80686 München	Wilhelmshöher Allee 73
Tel.: +49 (0)89 / 54 70 88-374	D-34121 Kassel
Fax: +49 (0)89 / 54 70 88-66374	Tel.: +49 (0)561 804 6556
erik.oswald@esk.fraunhofer.de	Fax: +49 (0)561 804 6008
alexander.auer@esk.fraunhofer.de	dahlhaus@uni-kassel.de
www.esk.fraunhofer.de	www.comlab.uni-kassel.de
Partner - LfKT	Innovation Mentor - KK
Universität Duisburg-Essen	
Lehrstuhl für Kommunikationstechnik	
Prof. DrIng. habil. Peter Jung	Dr. Klaus-D. Kohrt
Oststraße 99	Martin-Krebs-Weg 4
D-47057 Duisburg	D-24340 Eckernförde
Tel.: +49 (0)203 379-2564	Tel,: +49 (0)4351 476618
Fax: +49 (0)203 379-2938	
peter.jung@kommunikationstechnik.org	klaus-d.kohrt@t-online.de
www.kommunikationstechnik.org	

Outline

- Motivation
- System Architecture
- Network Architecture
- Time-Frequency Analysis Using Filter banks
- Spectrum Sensing and Signal Synthesis
- Summary

Motivation

- Tremendous growth in the applications of wireless sensor networks (WSNs) operating in unlicensed spectrum bands.
- Cognitive radio (CR) integrated with wireless sensors can overcome the many challenges in current WSNs.
- Design and implemention of a CR prototype with industrial automation as a main field of application.
- Based on the novel approach of time-frequency signal processing and channel prediction.
- Filter bank based time-frequency realization.
 - Facilitates simultaneous spectrum sensing and reception of secondary transmissions using the same device.

System Architecture

Network Architecture

- Master/slave, with the master granting spectrum access privileges to the slaves based on the output of a prediction block that predicts free white spaces.
- On the MAC layer level, a predictive collision avoidance algorithm that would use prediction to avoid collisions.
- On the PHY level, optimized time-frequency pulses similar to OFDM to be designed, with the implementation being based on filter banks.

Time-Frequency Analysis using Filter Banks

	DFT FB	Gabor frame
$g\left[k\right] = d^*\left[-k\right]$	analysis prototype filter $d[k]$	Gabor atom (or window) $g[k]$
$w\left[k\right] = r\left[k\right]$	synthesis prototype filter $r[k]$	Gabor atom $w[k]$
N	down/up-sampling factor	time shift
K	number of sub-bands	frequency shift
$v_m[\ell] = X[\ell,m]$	sub-band signal $v_m \left[\ell\right]$	Gabor coefficient $X[\ell, m]$

Time-Frequency Analysis using Filter Banks

ITG FG 5.2.4 "IP and Mobility" workshop on Wireless Sensor Networks

10

Spectrum Sensing and Spectrum Access

- Interference from secondary users (SUs) modeled as a shot-noise process
- Problems arising in classical spectrum sensing techniques in timefrequency domain such as high side lobe level resulting in leakage, low frequency resolution etc. resolved through Gabor analysis.
- Time-frequency concentration can be achieved with a simple constrained optimization which allows to trade performance against complexity.
- Sensing problem reduces to binary hypothesis testing problem

Summary

- Brief overview of the CAROUSAL project and its use cases.
- System and network architecture.
- Time-frequency analysis using filter banks.
- Spectrum sensing overview.

