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Baseband Unit Pooling

LTE Cloud-RAN Architecture

• Remote Radio Head (RRH)

– located at previous eNodeB locations 

– consists of antenna, power amplifier, 

and AD/DA converters

• Baseband Unit (BBU)

– located at a central office

– performs baseband and higher layer computation

– consists of ASICs, FPGAs, DSPs, general-purpose processors

Why Pool BBU Resources?

• Improved support of LTE-advanced features, 

e.g. easier implementation of CoMP mechanisms

• More efficient maintenance (OPEX)

• Hardware pooling gains (CAPEX)
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Hardware Pooling Gains

BBU Compute Resource Dimensioning

• Separate BBU for each sectors

– should be able to achieve LTE peak capacity

→ processing resources dimensioned for peak load

→ overdimensioned 

(most of the time less resources required)

• BBU Pool serving multiple sectors

– accept that the system capacity 

can be limited by processing resources

→ processing resources dimensioned 

according to demand probability

→ a pooling gain can be realized

Research Questions

• How large is this pooling gain?

• How to organize the resources in the central BBU pool?
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Evaluation Scenario (1/3)

LTE Network Model

• 3GPP compliant LTE Rel. 8 model

• 57 macro cells

• Uniform user distribution (in paper also non-uniform)

• No mobility, but new coordinates for each download

Further details: [Werthmann 2013]
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Evaluation Scenario (2/3)

LTE Network Model

• 3GPP compliant LTE Rel. 8 model

• 57 macro cells

• Uniform user distribution (in paper also non-uniform)

• No mobility, but new coordinates for each download

Traffic Model

• Downlink web traffic modelled on application layer

• Object sizes according to fixed network measurement

[Hernandez-Campos 2004]

Further details: [Werthmann 2013]



7© 2013 Universität Stuttgart • IKR Baseband Pooling in 4G Cellular Networks

Evaluation Scenario (3/3)

LTE Network Model

• 3GPP compliant LTE Rel. 8 model

• 57 macro cells

• Uniform user distribution (in paper also non-uniform)

• No mobility, but new coordinates for each download

Traffic Model

• Downlink web traffic modelled on application layer

• Object sizes according to fixed network measurement

[Hernandez-Campos 2004]

Processing Effort Model

• Processing effort of Phy layer for each allocated physical resource block (PRB)

• Scales with occupied PRBs, modulation and coding scheme (MCS), and MIMO mode

[Desset 2012]
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Further details: [Werthmann 2013]
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Sum Processing Effort (1/2)

Study

Sum of all required processing 

resources for each TTI

Results

• Fluctuations caused by traffic model, 

scheduling, and channel quality

• Even at high system load, the max. 

possible compute load is not reached

• Larger gains can be achieved 

with non-uniform user distributions 

(not shown here)
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Sum Processing Effort (2/2)

Study

Sum of all required processing 

resources for each TTI

Results

• Fluctuations caused by traffic model, 

scheduling, and channel quality

• Even at high system load, the max. 

possible compute load is not reached

• Larger gains can be achieved 

with non-uniform user distributions 

(not shown here)

• All following evaluations 

are simulated with 60% load

• Pooling gain derived from 99%tile
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Placement of Processing Load on Processors

Previous Evaluation [Werthmann 2013]

• Just evaluated sum of processing requirements

• Corresponds to one large homogeneous processor

Following Evaluations

• Placement on small discrete processors

• Comparison of different placement strategies
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Level of Virtualization

Whole Cells

Combined virtualization of UE Stacks and cell functions

→ Low granularity

UE Stacks

Separate virtualization of UE Stacks and cell functions

→ High granularity

Note: Compute effort for cell functions and 

communication effort not evaluated here



12© 2013 Universität Stuttgart • IKR Baseband Pooling in 4G Cellular Networks

Worst-Case Placement of UE Stacks

Study

• Aggregated load of randomly 

selected 1/57th of the UEs

→ Same average load as one sector

Results

• No mutual restriction 

of air interface resources 

→ High variation

• Peak processor capacity of a single 

sector is exceeded in 20% of the TTIs

• 124% Multiplex loss (reference capacity 

to 99%tile of required capacity)

Worst-Case placement strategy → lower bound of multiplexing gain
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Optimized Placement of UE Stacks (1/3)

Assumptions

• Processors of predefined size

• Idealized communication between processors

• Instantaneous movement of UEs between compute units

Optimization problem

Every TTI, place all active UEs on compute units, 

so that the number of used compute units is minimized

→ NP-hard binpacking problem
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Optimized Placement of UE Stacks (2/3)

Study

• Processor capacities are multiples of 

single sector peak effort (68 GOPS)

• Placement of all active UEs 

on the processors

• Output: Number of required 

processors per TTI

Results

• Multiplexing gain instead of loss

• Gain close to previous idealized 

studies (there: 36%)

• Small increase of the multiplexing gain 

for larger processors

• Lower gain for small processors 

caused by off-cuts ("Verschnitt")

Ideal placement strategy → upper bound of multiplexing gain
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Optimized Placement of UE Stacks (3/3)

Example

Placement of UE-Stacks for a single TTI on processors of different size

→ Larger off-cuts occur with smaller processors

57 processors with single-sector capacity 19 processors with three-sector capacity
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Optimized Placement of Whole Cells

Study

• Predefined processor capacities

• Placement of all active cells 

on the processors 

(sum effort for all UEs of a cell)

• Output: Number of required 

processors (per TTI)

Results (compared to UE virt.)

• Lower granularity 

→ lower multiplexing gain 

for small processors

• Similar multiplexing gain 

reached only with processors 

with a capacity >= 6

→ Virtualization of whole cells requires larger processors to avoid off-cuts
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Conclusion and Next Steps

Conclusion

Evaluated theoretical savings in hardware required for physical layer computation

• Significant difference between random placement (124% loss) 

and optimized placement (32 % gain)

• Optimized placement achieves multiplexing gain 

close to that achieved in idealized evaluations

→ Placement strategy has to be selected carefully

Evaluated packing off-cut for two levels of UE virtualization

• Virtualizing UE stacks is complex, but provides more flexibility

• Hardware savings are similar for large processors

→ Relation of processor size and job size has to be considered to avoid off-cut

Next Steps

• Evaluate realizable placement strategies

• Consider costs introduced by the additional complexity
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