

Secure embedding of virtual networks

VDE/ITG Workshop "Mobile Network (Function) Virtualization and Software Defined Networking TUM, München / Garching, 2013 Andreas Fischer and Hermann de Meer

Virtual Network Embedding (VNE): Map virtual resources to

Virtual Network Embedding

- physical resources
 - Physical network provides resources
 - Virtual networks consume resources

- Node: E.g. CPU power
- Link: E.g. bandwidth

Computer Networks

& Communications

Prof. Hermann de Meer

VNE: Problem complexity

Embedding is NP-hard

- Bin-packing problem (nodes)
- Unsplittable flow problem (links)
- Possible approaches
 - Exact (slow)
 - Heuristic
 - Meta-heuristic
- Different optimization criteria
 - High acceptance ratio
 - Low resource spending

Computer Networks & Communications Prof. Hermann de Meer

3 10

Virtual network security issues

- Virtual node to virtual node
 - Resource starvation: Excessive CPU usage
 - Can be used as Denial of Service attack
 - Sidechannel attacks

Computer Networks

& Communications

Prof. Hermann de Meer

- Virtual machine to virtual link
 - Eavesdrop on communication
 - Resource starvation: Excessive network traffic
- Virtual machine to physical machine
 - Exploit vulnerabilities in virtualization solution
 - Threatens other virtual machines as well

A. Fischer, "Secure embedding of virtual networks"

Security-aware VNE

- Apply VNE concepts to achieve security goals
 - Ensure performance by giving resource guarantees
 - Restrict critical virtual resources to special hardware
 - Real-time capable hardware for availability
 - Encryption capable hardware for confidentiality
 - Avoid co-hosting of potentially dangerous virtual nodes with other, critical virtual nodes
- New properties to consider for virtual resources
 - Real-time capabilities
 - Encryption capabilities
 - Reliability / trustworthiness

Modeling reliability / trustworthiness (1)

- First approach
 - Binary distinction: Secure / Insecure
 - Drawbacks
 - Too inflexible
 - Acceptance ratio can become very bad
- Second approach
 - Assign security levels to physical and virtual resources
 - Very low / low / medium / high / very high security
 - Try to minimize difference between security levels on same machine
 - Drawback: Semantic overload: Required vs. provided security

very high high

Modeling reliability / trustworthiness (2)

Third approach

- Assign security levels for security required and security provided (both physical and virtual resources)
 - Assign tuple (sec:required, sec:provided) to each resource
 - Try to cross-match: Ressource A (sec:required) <-> Ressource B (sec:provided)
- Drawbacks
 - Acceptance ratio still not good
 - Still only focused on individual resources

Evaluation with "ALEVIN": Simulation of VNE algorithms

- Create networks
 - Physical and virtual
 - Arbitrary topologies
- Support various resources
 - Link and node
 - Beyond just CPU and bandwidth
- Run VNE algorithms
 - Evaluate with common metrics
 - Compare results

- Extend existing simulation software
 - Support security requirements definition
 - Support evaluation of security metrics
- Implement security-aware VNE algorithm
 - Adhere to security requirements
 - Minimize performance impact
- Evaluate with realistic topologies
 - Predefined topologies (e.g., SNDlib)
 - Structured, randomly generated topologies

Computer Networks

& Communications

Hermann de Meer

- Virtual networks enable flexible network management
 - Rapid creation of virtual network topologies
 - Dynamic modification possible
- Optimizing resource assignment is hard, but solvable
 - Comparison of algorithms is necessary
 - Common simulation environment required
- Secure instantiation of virtual networks remains to be solved
 - Going beyond performance requirements
 - Requires new VNE approaches