CARRIER LANDSCAPE FOR SDN NEXT LEVEL OF TELCO INDUSTRILIZATION?

Andreas Gladisch, Fritz-Joachim Westphal

Deutsche Telekom Innovation Labs

Ŧ•

ERLEBEN, WAS VERBINDET.

COMPLEXITY BY DOZENS OF SPECIALIZED BOXES AND THOUSANDS OF PROTOCOLS.

How can we get rid of the specific boxes, especially gateways & middle-boxes? SDN promised a drastic simplification.

BESIDE COMPLEXITY, ALSO VENDOR LOCK-IN MAKES LIVE OF OPERATORS DIFFICULT.

- New products with modifications of platform only
- Software implementation by vendor only

> Limited flexibility, slow implementation, Extended time-to-market

High platform complexity

Vendor lock-in style of eco-systems

DIFFICULT TO EFFICIENTLY REALIZE NETWORK SERVICE INNOVATIONS.

- High complexity of platform architecture
 - Coupling of softand hardware
- 3 New product with modification of platform only
- 4

2

Software implementation by vendor only

- Limited flexibility,
- Slow implementation
- Extended time-tomarket
- High OpEx

TRENDS IN IT: ORDER OF MAGNITUDE CHANGES ARE UN-STOPPABLE (JUNIPER'S VIEW).

MODULARIZATION & STANDARIZED INTERFACES. MASSIVE LOWERING OF MARKET AND INNOVATION BARRIER.

Split of software centric and hardware centric part; Split of application and control (software); Split of forwarding and processing (hardware).

SDN. THE TECHNICAL SOURCES OF THE TREND.

How to program
forwarding decisions?

Academic driven development to control flexibility of forwarding.

Example: OpenFlow 1.3

Missing:

- Abstraction of process. actions
- Higher level abstraction/ aggregation of functions

Campus networks Enterprise Networks

i sions?	Seamless DC virtualization/orchestr.	Can we simplify the middle boxes ?
ntrol ding.	Fast setup of virtual topologies integrated in virtualization /orchestration. framework	Virtual Firewall, virtual Load- balancer, virtual ePC on top of x86.
ow 1.3	Example: Open vSwitch OpenStack	Example: ETSI Group on NFV
process. ostraction/ functions	 Missing: L4-L7 integration Higher level of abstraction 	Missing: Activities just started
works etworks	Inner DC SDN DC interconnect	Virtualisation of network functions like ePC

MANY USE CASE AREAS IN THE TELCO REALM.

GOOGLE DATA-CENTER – INTERCONNECTION

Design Príncipes

- B4 routers built from merchant switch silicon
- Drive links to 100% utilization
- Centralized traffic engineering
- Separate hardware from soft₩are

Challenges

- Sacrifice hardware fault tolerance, deep buffering, and support for large routing tables.
- Packet loss becomes inevitable with substantial capacity loss during link/switch failure.
- No existing protocols for functionality. Requires knowledge about site to site demand and importance.
- Previously untested development model. Breaks fate sharing between hardware and software.

MANY USE CASE AREAS IN THE TELCO REALM. EXAMPLE: CLOUD NETWORK CE NTRIC SERVICES.

THERE ARE TO MANY NETWORKS. HARMONIZE ARCHITECTURE OF FIXED, MOBILE AND WIRELESS.

Motivation for harmonization

- Customers using several mobile devices in addition to fixed Internet access @home, @work.
 - Count the # of attachment points you use per day!
 - Customers are missing consistent user experience
- Different network interfaces use entirely different network architectures.
- Paths from user to the same content converge only deep in the network, if at all.
- We know the disadvantages in terms of operations, complexity, cost.

LINUX FOUNDATION PROJECTS RELEVANT FOR TELCOS

Carrier Grade LINUX (self telling name: defining requirements)

CGL has two main functions. First, interface with network equipment providers & carriers to gather requirements & produce specifications that Linux distribution vendors can implement. Second, to take unimplemented requirements & foster development projects that will meet these requirements & assist in their upstream integration.

Yocto (Build System and Production)

Yocto provides open source, high-quality infrastructure and tools to help developers create their own custom Linux distributions for any hardware architecture and across multiple market segments. Yocto is intended to provide a helpful starting point for developers.

Open Daylight (SDN Applications)

With Open Daylight, a community has come together...through the combination of open community developers & open source code & project governance that guarantees an open, community decision making process on business & technical issues. Establishing an open source project in this way is designed to help accelerate the development of technology available to users & enable widespread adoption of Software-Defined Networking.

SDN STANDARDIZATION. CAN WE ACHIEVE A LINUX LIKE OPEN SOURCE MODEL ?

RELEVANCE OF OPEN SOURCE SOFTWARE IS INCREASING.

- MPLS components at : <u>http://www.openflow.org/wk/index.php/OpenFlowMPLS_NOX</u>
- Multitechnology Soft L3/L2 Switch (like OpenVswitch for x86): <u>https://www.codebasin.net/</u>
- SDN library for building recursive controller and data-path elements: <u>https://www.codebasin.net/redmine/project/rofl-core</u>
- Experimental Network Virtualization "Vertigo" <u>http://fp7-ofelia.github.io/vertigo/</u>
- Experimental Network Virtualisation Toolkit <u>http://fp7-ofelia.github.io/ocf/</u>

14

TODAY'S ARCHITECURE.

VISION, ASSUMING SDN PROGRAMMING OF TRANSPORT & SERVICES: SERVICE CHAINING.

Flexible service programmability will allow optimised and dynamic placement of recources.

EXAMPLE OF SERVICE CHAINING: ADVANCED VPN

L2 or L3 VPN TIED WITH VALUE ADDED SERVICES

KEY ISSUES FOR OPERATION OF FUTURE NETWORKS: COMBINATION OF DEVELOPER AND OPERATOR

THE PROMISE OF SDN & VIRTUALIZATION FOR AN OPERATOR.

Accelerated Time-to-Market

SDN – NEXT STEP IN INDUSTRALIZATION

THANK YOU.

Fritz-Joachim Westphal Network Architecture & Modeling Telekom Innovation Laboratories

Deutsche Telekom AG

Ernst-Reuter-Platz 7 10587 Berlin, Germany Phone: +49 30 8353 58865 E-Mail: fritz-joachim.westphal@telekom.de

om Innovation Laboratories