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Helicopter Drones
Wireless communication is an important means for coordination rescue and
operations. Helicopter drones could easily be used as mobile relay
> . to provide a wireless link ower long distances. Choosing a seif-
G 0 a | : organizing approach for positioning of the drones shows the following
advantages:
- no knowledge about the landscape is needed

place drones as relays for supporting an efficient multi-hop e

- dynamically appearing,/disappearing obstacles are automatically conszidered
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inherits the maximum flow from each
route.
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drone positioning after ~ 1500 steps
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Self-organizing flying relays
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Goal: o o
flying robots should sweep an unknown area ' |
e.g. for disaster management operations ' |
no a priori planning possible due to unknown obstacles | [ .
Approach | @

problem modeled in FREVO tool
outcome is similar to a random direction algorithm
but with different behavior upon detection of other drones

http://www.youtube.com/watch?v=rkXZcbi2KpM&t=3m38s

|. Fehérvari, W. Elmenreich, and E. Yanmaz. Evolving a team of self-
organizing uvavs to address spatial coverage problems. In R. M. Bichler, S.
Blachfellner, and W. Hofkirchner, editors, European Meeting on Cybernetics
and Systems Research Book of Abstracts, pages 201—204, Vienna, Austria,
April 2012.

Evolving a distributed search algorithm




e Asetof autonomous robots
e Equipped with a number of sensors [ actuators
 With an onboard decision unit (brain)

e Thatis being evolved in order to obtain the desired
collective behavior

Evolutionary swarm robotics




* The designer of an ER experiment has to make many
choices on
e experimental setup (ecology)
* genotype-to-phenotype mapping
* sensory motor system
 fitness function

e ...thatis mostly based only on experience

uckily, evolut

I
design choices... but it is not guaranteed

Design of an ER experiment




* The designer of an ER experiment has to make many
choices on

* sensory motor system

* Everything that is at the interface between the control
system of a robot and the robot’s environment

Design of an ER experiment




e Usually the sensory-motor system is chosen through
intuition or experience relying on

e smallest set of sensors and actuators
* minimizing pre- and post-processing of raw data

* This approachisill-posed for evolving robotic swarms
e Such systems are very sensitive even to minor
changes to their configuration

i G prnpel \_hUI\_C \_qll hCII dl\yl he d

information on its effects

The effect of the robot configuration




* Do slightly different configurations effect the quality
of the evolved solutions?

* |fyes, how?

The effect of the robot configuration




Source: A bird ballet by Neels Castillon [ http://vimeo.com/58291553]

Flocking in nature




* Flocking is probably the simplest, most understood self-
organizing behavior

* There exists many studies on the simulation of flocking

* It can be obtained by three basic individual rules:

1. collision avoidance .
Group cohesion

2. flock centering distance, bearing

Group motion
heading

3. velocity matching

Why flocking?




e We evolve the neural controllers of 10
marXbot robots using ARGoS

e Robots are equipped with
e abelt of evenly distributed RGB LEDs that

allow signaling with different colors y
e anomnidirectional camera

* proximity sensors &
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configurations

Evolving flocking behavior




What is the best configuration for the LEDs?
Do empirical decisions prevail?
Gripper

__ L1

L0

LED configuration
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LED setups

Only proximity sensor

All LEDs are blue

Single LED on both sides
Double LEDs on both sides
Four LEDs on both sides
Full side on

Single LED front-back

Double LEDs front-back
Four LEDs front back

~ T’

Full front-back




Robot controller is a fully-connected feedforward
neural network with 18 inputs and 2 outputs

We use a simple biobjective evolutionary algorithm
with a population size of 100 for 200 generations

Best 25 is kept for reproduction, only mutation
operator
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Evolving flocking behavior




e Pareto-optimality provides a reliable way to compare
the results of different runs

 Ifthereis no clear advantage, then direct comparison is
probably infeasible

* Inthis case we use EAF (empirical attainment function)
to compare

Evolving flocking behavior




Motion
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* Both configurations perform poorly
 LEDs only help to detect bots that are farther away

Results: comparison of control configurations
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* Heading information clearly helps

Results: comparison of control configurations
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e Less LEDs perside perform better
e Sidewise and front-back configurations perform better on
different parts of the pareto front

Results: comparison of LED configurations




Evolved behavior




» Different parts of the pareto front might correspond
to different group behavior:

e Aggregation (robots do not move)
* Disperse (robots spread around)

* Wavefront (robots move togetherin a single arc)
e Train (robots follow each other)

* Flocking (objective)

* Define metrics to identify behaviors

Behavior analysis




if Q3(K) > 1 then

| return Disperse
end
if Q4(M) < D, then

| return Aggregation
end
if @1(C) = D. then

| return Flocking
end

if Q2(0) < T then

| return frain
end - _
return Wavefront

* Regions corresponding to different group behavior
can be separated

Behavior analysis




The selection of the robot configuration can determine
the success or the failure of the evolutionary experiment.

Empirical decisions might result to sub-optimal solutions

Co-evolution of LED configuration might reveal more
information

However, suitable encoding must be devised to ensure
the co-evolvability of configuration and behavior.

Conclusions and future work




