8th KuVS Fachgespräch NGSDP – "Competitive Service Delivery Infrastructures" April 17th, 2013, Vodafone-Schulungszentrum, Königswinter, Germany

Elastic Cloud Principles applied onto Telco SDPs and NFV

Giuseppe Carella, <u>Thomas Magedanz</u>, Florian Schreiner

giuseppe.a.carella@tu-berlin.de thomas.magedanz@fokus.fraunhofer.de florian.schreiner@fokus.fraunhofer.de

Introduction

- Cloud Elasticity some definition:
 - Elasticity has been defined by NIST as the possibility to increase or decrease available resources on demand. It is one of the most important properties of cloud infrastructures
- Network Function Virtualization
 - Introducing flexibility in network management operations
- Motivation:
 - Resources optimization
 - Traffic fluctuation

[1] http://www.alexa.com/siteinfo/beppegrillo.it

What is Network Functions Virtualization (NFV)

- Network Functions
 Virtualization (NFV) is a
 novel paradigm that
 presumes that the network
 functions:
 - Are implemented only as software (programs)
 - Can run on top of common servers
- NFV implies that network functions:
 - Can be moved as required
 - Do not require special equipment

Cloud elasticity

- Utilize applications only when are really necessary:
 - Reducing costs pay only for what is used
 - Improving QoS without overprovisioning

SDP as a Service - SDPaaS

- The Cloud model (with its elasticity) is "the" enabler of Service Delivery Platforms
 - Reduced time to market for new services
 - Instantiation just with "a click"
 - Reduced CAPEX only pay per use
- It enables efficiencies and scalability:
 - Those are two of the most important characteristic in telecommunication services!

Scalability of a system – a short background

- Elasticity enabler for "scalability" the measurement of the point of failure of a system
 - In which cases the system will not work anymore efficiently?

- It has been demonstrated that systems that don't scale lose customers:
 - Google discovered that adding 500ms delay to page response time reduce the traffic of 20% [2]

[2] http://dyn.com/blog/dns-roi-5-reasons-slow-website-speed-kills-why-uptime-is-a-necessity/

Scalability approaches - two possibilities

- Vertically:
 - Increase the capacity adding new resources to an existing node

- Horizontally:
 - Increase the capacity increasing the number of nodes (in most of the case clone of a basic node)

Stateless and stateful model

- Stateful applications:
 - The client is tied to a specific instance for the duration of the all session
- Stateless applications:
 - The state of a session is stored in the client (fat client) and attached in each request or stored / retrieved by the application from an external database

Stateless applications usually scale better

Scalability approaches

Vertically:

- It works properly with both stateless and stateful applications
- But it has a physical limitation due to the available hardware in a single location

Horizontally:

- It works properly with homogenous (stateless) nodes
- Specific procedures are necessary for stateful application for working in this approach

Horizontally ~ infinite resources available

Scalability approaches - which one?

- It is important to identify which <u>scalability approach</u> to use
- Identify which metric to consider for scaling
- What <u>procedures</u> to apply in case of problems?

It strongly depends on the specific system

Network Function Virtualization Management

- Even more operators are moving to cloudified datacenters
 - OpenStack and OpenNebula as principles cloud controllers
- NFV and SDPaaS need specific management tools
 - There is a need of an exstensible management tool which support:
 - Monitoring of specific network KPIs
 - Different load balancing mechanisms
 - Flexible configuration of network topologies
- Commercial platforms (like AmazonEC2,Rackspace, etc.) and opensource tools are not ready for the complexity of those systems

FOKUS Cloud Broker (FCB)

- Generic framework for automatic management of resources which
 - Allows multi-tier applications management
 - Decoupled from a specific Cloud Controller (CC) API
 - Extensible interface with load balancer components (DNS/HTTP/SIP)
 - Rules engine

FOKUS Cloud Broker (FCB)

- Different strategies for solving different problems:
 - Possibility of creating rules using an XML file or REST APIs
 - By default are provided some generic strategies which solves common problems
 - Users can customize actions writing a simple JAVA class

```
<trigger>
<name>upscale</name>
<type>CPU</type>
<period>90</period>
<expression>cpu>70%</expression>
<strategy>OwnStrategy</strategy>
<action>addVm</action>
</trigger>
```

```
mublic class OwnStrategy{
    if (action.equals("addVm")){
        ip = elasticGroup.addVm();
        loadBalancer.addVm(ip);
    else
    ...
}
```


FOKUS Cloud Broker in Different Cloud Domains

- Currently used in EU BonFIRE project as elasticity enabler
- Already part of the FUSECO Playground for M2M and WebRTC IMS services

Permanent (~350cores/30TB) & On-Request (theoretically 3000+cores) infrastructures Note: network links indicative only

Smart Communications Playground

Open Communication Server

M2M & RCS APIs / SDKs

WebRTC

Telco Communicator Suite

Smart Communications Playground

Fraunhofer **FOKUS**

www.SC-Playground.org

FUSECO Playground

OpenIMS

OpenMTC

WiBack

OpenEPC

OpenCTK

www.FUSECO-Playground.org

WiFi

DSL, FTTx

Future Seamless Communication (FUSECO) Playground

- State of the art testbed infrastructure as a cooperation of Berlin's Next Generation Mobile Network expertise for
 - Open IMS for H2H communications
 - OpenMTC for M2M communications
 - OpenEPC for seamless access
 - Various access network technologies
- Enabling to prototype application support for
 - handover optimization across heterogeneous networks
 - support for Always Best Connected (ABC)
 - subscriber profile based service personalization
 - QoS provisioning and related charging
 - controlled access to IMS-based services
 - controlled access to Internet/Mobile Clouds
 - SDN and NFV protoyping

OpenMTC in a multi-cloud testbed

OpenIMSCore onto an OpenNebula testbed

The case of a Media Server as a SUT

- Used SIP Express Media Server (SEMS) as a SUT:
 - Scenario of an announcement service

Experimental results (1/2)

Experimental results (2/2)

Conclusion and future work

- Conclusion
 - The FOKUS Cloud Broker has been evaluated in different cloud testbeds:
 - OpenNebula based testbed
 - BonFIRF multi cloud infrastructure
 - Different services have been managed by the FCB: for this work we considered a media server as example
- Future work
 - Integration with AmazonEC2
 - Provisioning and management of the OpenEPC framework

What is FOKUS OpenEPC Platform?

- Future massive broadband communications will be realized through multi-access support (LTE, 3G, 2G, WiFi, fixed networks ...) and multi-application domains (OTT, IMS, P2P, M2M, Cloud, ...)
- Fraunhofer FOKUS is developing the NON-OPEN SOURCE OpenEPC toolkit, enabling to:
 - integrate various network technologies and
 - integrate various application platforms

into a single local testbed, thus lowering own development costs

- This platform can be used to perform R&D in the fields of QoS, Charging, Mobility, Security, Management, Monitoring
- OpenEPC represents a software implementation of the 3GPP EPC standard addressing academia and industry R&D:
 - Based on 3GPP standards
 - Configurable to different deployments
 - Customizable to the various testbed requirements
 - Extensible to specific research needs
 - Reliable & highly performant
- More information: www.OpenEPC.net

OpenEPC Rel. 4: Mirroring the Future Operator Core Network

- OpenEPC includes the almost all functions of 3GPP Evolved Packet Core Rel. 11
- The principles of standard alignment, configurability and extensibility have been respected in the overall architecture and in the specific components implemented
- OpenEPC Rel. 4 enables the establishment of small operator network testbeds including:
 - Core network mobility support (GTP, PMIP)
 - Integration with real LTE, 3G, 2G and WiFi
 - AAA for 3GPP and non-3GPP accesses
 - Policy and Charging Control
 - Access network selection
 - Common mobile equipment support

PLEASE NOTE: OpenEPC does not claim 100% standard compliance, but allows for early prototyping

OpenEPC includes all the main required functions and more

Demo. Enablers

Open IMS Core Adaptable video streaming app HTTP Interceptor

API for Applications

QoS and Events Access Network Selection Correlated Charging

OpenEPC

Core Network Mobility
Support
3GPP LTE, 3G, 2G support
non-3GPP accesses support
Client Mobility Management
Policy and Charging Control
Accounting and Billing
Subscriber Identity Mgmt
AAA
Distribution Features

Provisioning System

Subscription provisioning Automatic component config Automatic deployment tools

Evaluation

Packet Tracking FlowMon Load Monitoring Tool

Transport Networks

Data packets forwarding QoS enforcement Data Flow accounting

Management System

Remote Procedure Calls
Dynamic Ctrl. Plane Parameters
Subscriber management (IMSI)

Access Networks

LTE, 3G, 2G connectivity Minimal CS support non-3GPP connectivity

Mobile Device

Zero-packet loss handover Android and Linux OS devices SIM cards and single auth

OpenEPC Scales for different deployments

- OpenEPC components can be deployed in almost any configuration possible
 - Large testbeds each component on a separate machine
 - Smaller testbeds components are grouped in same servers
 - Single box testbed components are virtualized on the same machine
 - Minimized testbed the OpenEPC components run as parallel programs on the same box

Large Testbed

Single Box Testbed

What's next: Elastic and Flexible Network Design - Example EPS

- Elastic network design aligned on real-time network load situations
- Enablement and disablement of redundant access- and core-network elements
- Optimized energy consumption of the access- and core-network
- Network Resources as a Service (NRaaS) and on demand

EU Mobile Cloud Networking Project makes use of OpenEPC for EPCaaS Prototyping

- FP7 Intergated Project started in November 2012 for 36 month targeting for bringing cloud computing features to mobile operator core networks (EPCaaS):
 - Virtualization of components
 - Software defined networks
 - Elasticity

From...

- Total distribution
- Infrastructure sharing
- Redefining roaming
- OpenEPC is used as the basis platform for mobile core network experimentation

For more: http://mobile-cloud-networking.eu

service provider

Mobile

"as a service"

4th FOKUS "Future Seamless Communication" Forum (FFF) Berlin, Germany, November 28-29, 2013

FUTURE SEAMLESS COMMUNICATION

- Theme: "Smart Communications Platforms for Seamless Smart City Applications –
 Fixed and Mobile Next Generation Networks Evolution towards virtualized network
 control and service platforms and Seamless Cloud-based H2H and M2M Applications"
- FUSECO FORUM is the successor of the famous FOKUS IMS Workshop series (2004-09)
 - FFF 2010 attracted 150 experts from 21 nations
 - FFF 2011 was attended by around 200 experts from 30 nations
 - FFF 2012 was attended again by around 200 experts from 30 nations
- See www.fuseco-forum.org

References

- National Institute of Standards and Technology (NIST), 2011. [Online]. http://www.nist.gov
- P. Bellavista, K. Campowsky, G. Carella, L. Foschini, T. Magedanz, F. Schreiner, "QoS-aware elastic cloud brokering for IMS infrastructures", The Seventeenth IEEE Symposium on Computers and Communications (ISCC'12). July 1 4, 2012, Cappadocia, Turkey.
- K. Campowsky, G. Carella, T. Magedanz, F. Schreiner, "Optimization of Elastic Cloud Brokerage Mechanisms for Future Telecommunication Service Environments", Praxis der Informationsverarbeitung und Kommunikation. Volume 0, Issue 0, ISSN (Online) 1865-8342, ISSN (Print) 0930-5157, DOI: 10.1515/pik-2012-0036, June 2012
- Konrad Campowsky, Giuseppe Carella, Thomas Magedanz, Florian Schreiner, "Network-aware Cloud Brokerage for telecommunication services", accepted for IEEE CloudNet'12, 2012 1st IEEE International Conference on Cloud Networking, November 28-30, 2012, Université Pierre et Marie Curie, Paris
- EU FP7 BonFIRE Project: http://www.bonfire-project.eu
- Galante G., Bona L. C. E. "A Survey on Cloud Computing Elasticity", In: International Workshop on Clouds and (eScience) Applications Management - CloudAM 2012, 2012, Chicago. International Workshop on Clouds and (eScience) Applications Management - CloudAM 2012, 2012.

