Economics of advanced HTTP Caching in eNodeBs

Chris Drechsler, Gerd Windisch Chair for Communication Networks Chemnitz University of Technology

- Introduction
- Improved HTTP Caching Method
- Cost Model
- Results of techno-economic Analysis
- Summary

Introduction

- Key challenge for mobile network operators:
 - tremendous increase in mobile data traffic (dominant protocol: HTTP)
- Solution for HTTP traffic reduction in RAN and core:

\rightarrow Caching in eNodeBs

- Advantages:
 - no access to GTP-tunnel (S1-interface) required
 - access transport cost savings (compared to centralized caching at S/P-GW)
 - QoS/QoE improvement
- Disadvantages:
 - small population size (at eNodeBs) \rightarrow low hit rate (caching efficiency)
 - higher cost for distributed cache deployment

Introduction

- Motivation:
 - increase caching efficiency \rightarrow improved HTTP caching method
 - evalute cost/efficiency tradeoff of the improved caching method in an eNodeB application scenario

• Introduction

Improved HTTP Caching Method

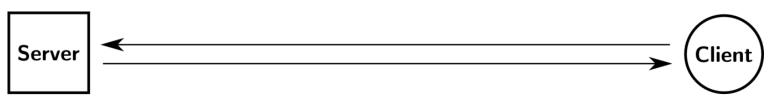
- Cost Model
- Results of techno-economic analysis
- Summary

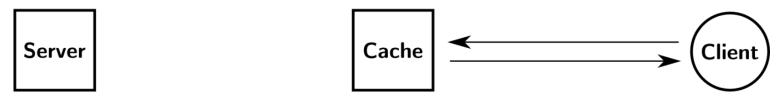
Improved HTTP Caching - HTTP Caching Efficiency

- Estimated efficiency potential of HTTP caching:
 - up to 68% HTTP traffic reduction (byte hit rate, BHR)
- Caching efficiency observed today:
 - only 10-20% (byte hit rate)
- Reasons for low caching efficiency:
 - difficult detection of duplicate payloads, example: http://s1.videoportal.com/PopularVideo.webm?userid=1111 vs. http://s2.videoportal.com/PopularVideo.webm?userid=2222
 - personalization
 - explicit suppression of caching by content producers
 - too small cache sizes
- \rightarrow new caching method to improve the caching efficiency

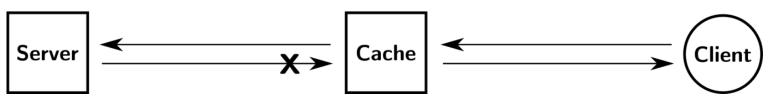
Improved HTTP Caching - Basic Concept

• HTTP header field extension:

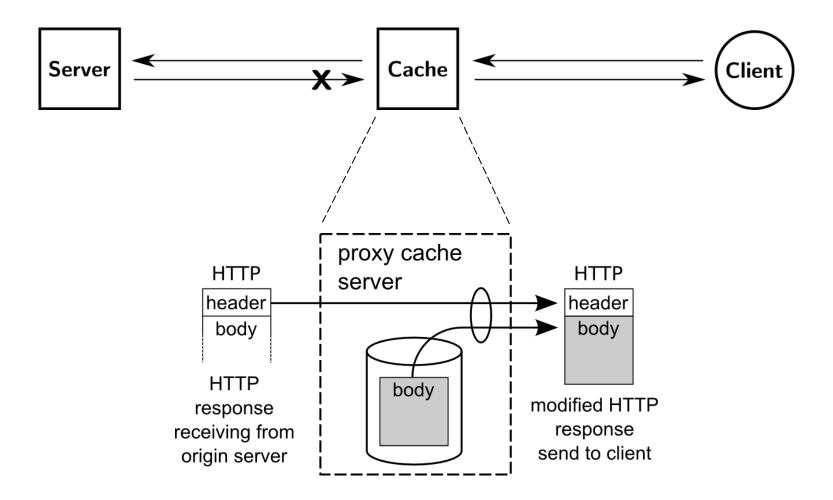

GET /videos/PopularVideo.webm HTTP/1.1 Host: example.com


Improved HTTP Caching - Basic Concept

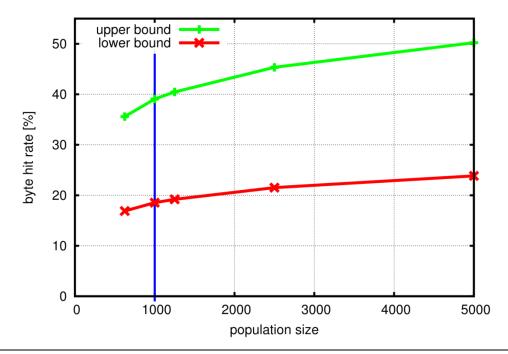
• Modified cache operation:


Without Caching:

Traditional Caching (example: cache hit):



Modified Caching (example: cache hit):

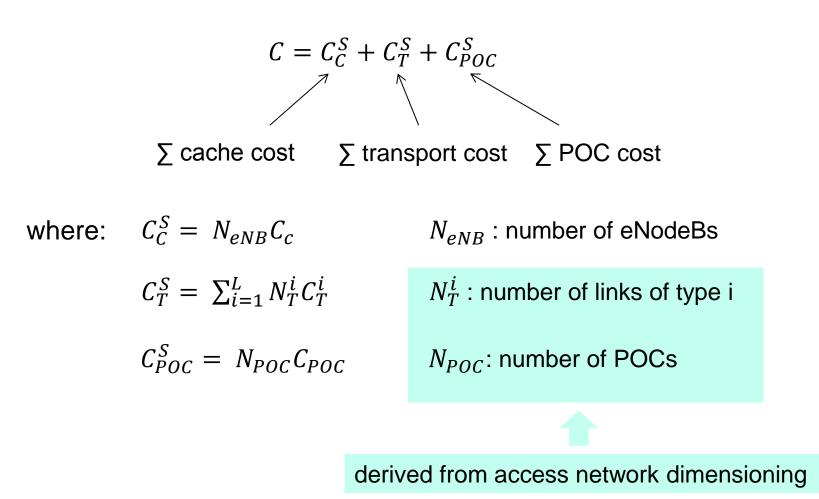

Improved HTTP Caching - Basic Concept

• Modified cache operation:

Improved HTTP Caching - Efficiency Evaluation

- Evaluation: byte hit rate (modified caching method) vs. population size
 - simulation model based on study of Erman et al.
 - BHR upper bound: optimistic HTTP caching scenario some header fields (e.g. cache-control, cookies) are ignored by the cache
 - BHR lower bound: pessimistic HTTP caching scenario all header fields are strictly considered by the cache

- Introduction
- Improved HTTP Caching at eNodeB sites
- Cost Model
- Results of techno-economic Analysis
- Summary


- Access network:
 - tree topology
 - microwave links:
 - assumption: discrete capacity steps: link type1 link type 4
 - multiple root nodes (Point of Connect, POC) connection to wired backhaul
 - assumption: all POCs of same size/capacity
- eNodeBs:
 - LTE eNodeBs with 3 cell sectors (10 MHz carrier) (NGMN Alliance model)
 - traffic per eNodeB (NGMN Alliance model):
 - busy hour traffic: 73.2 Mbit/s
- HTTP caches:
 - HTTP cache integrated in **each** eNodeB
 - assumption: sufficient cache size (fixed)

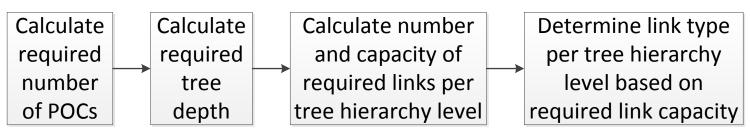
Cost Model - Cost Components

- Access transport link cost:
 - variable cost cost depends on link type i: $C_T^i = 2^{(i-1)E_{cost}}C_T^1$ i=1,4
 - cost of link type 1: $C_T^1 = F_T C_C$
 - *E_{cost}* used as a scaling parameter (cost step width)
- POC cost:
 - fixed cost (all POCs of same size/capacity): $C_{POC} = F_{POC}C_C$
- Cache cost:
 - fixed cost (due to fixed cache size): C_C
- eNodeB cost:
 - not considered because not relevant for techno-economic analysis of caching benefits
- Remark:
 - the cost factors F_T , F_{POC} are used to express the transport link (type 1) cost C_T^1 and the POC cost C_{POC} relative to the cache cost C_C

Cost Model - Total Costs

• Total cost (CAPEX) C of access network with caches in eNodeBs:

Cost Model - Cost Savings (compared to non-Caching)

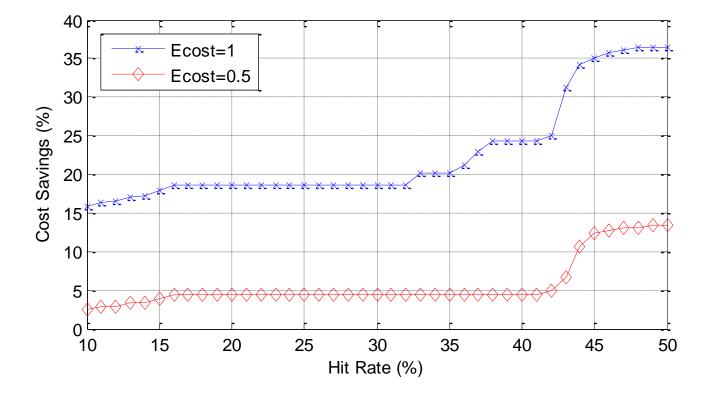

• Cost savings S_c of caching solution compared to non-caching case:

$$S_{C} = 1 - \frac{C_{with \ Caches}}{C_{without \ Caches}}$$

$$S_{C} = 1 - \frac{N_{eNB} + \sum N_{T,wC}^{i}}{\sum N_{T,wOC}^{i}} 2^{(i-1)E_{cost}}F_{T} + \frac{N_{POC,wC}}{\sum N_{T,wOC}^{i}}F_{POC}$$

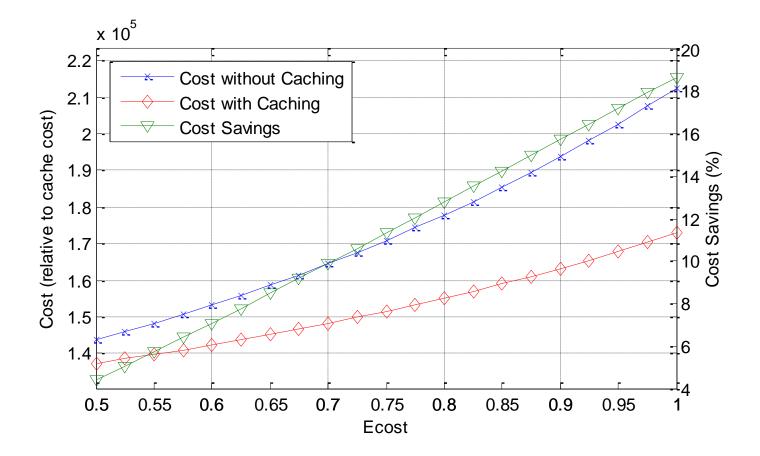
Cost Model - Access Network Dimensioning Algorithm

- Access network dimensioning algorithm:
 - heuristic algorithm for tree-shaped access networks based on dimensioning guidelines from NGMN Alliance
- Input:
 - number of eNodeBs: N_{eNB} (= 10000)
 - traffic per eNodeB: (73,2 Mbit/s)
 - aggregation ratio from one hierarchy level to the next higher: AR
- Output:
 - $N_{T,wC}^{i}$, $N_{POC,wC}$, $N_{T,woC}^{i}$, $N_{POC,woC}$
- Algorithm main steps:


- Introduction
- Improved HTTP Caching at eNodeB sites
- Cost Model
- Results of techno-economic Analysis
- Summary

Results - Input Parameter

- Traffic demand per eNodeB (NGMN Alliance model):
 - assumption: 3 sector eNodeB, 10 MHz carrier
 - busy hour demand: 73.2 Mbit/s
- Number of eNodeBs: 10000
- Aggregation ratio from one hierarchy level to the next higher: 4
- Initial cost factor settings:
 - $F_T = 10$
 - $F_{POC} = 100$


Results - Cost Savings vs. Byte Hit Rate

• Cost savings vs. byte hit rate

Results - Cost / Cost Savings vs. Ecost (BHR 20%)

• Costs and Cost savings vs. Ecost (byte hit rate 20%)

Results - Sensitivity Analysis

- Motivation: evaluation of the influence of the cost parameters on the cost savings
- 4 scenarios:
 - $E_{cost} = 0.5$, byte hit rate = 20%
 - $E_{cost} = 0.5$, byte hit rate = 40%
 - $E_{cost} = 1$, byte hit rate = 20%
 - $E_{cost} = 1$, byte hit rate = 40%
- Results:

Parameter	Parameter Variation Range	Cost Savings Sensitivity	Scenario
E _{cost}	0.5 to 1	4% - 24%	hit rate = 40%
F_T	-50% to +50%	18% - 24%	E_{cost} =1, hit rate = 40%
F _{POC}	-50% to +50%	3% - 5%	E_{cost} =0.5, hit rate = 20%

- Introduction
- Improved HTTP Caching at eNodeB sites
- Cost Model
- Results of techno-economic Analysis
- Summary

Summary

- Contributions:
 - method to improve the efficiency of HTTP caching
 - analysis of access network cost savings through improved caching in eNodeBs
- Key results:
 - significant cost savings through caching in eNodeBs possible
 - but:
 - modified caching method required (as traditional caching yields to low byte hitrate → not cost efficient)
 - cost savings strongly depend on parameters $(F_T, E_{cost}) \rightarrow$ careful individual cost analysis required