Interworking of traffic steering and mobility robustness optimization in multi-RAT scenarios

B. Wegmann

Nokia Siemens Networks - Research Munich, Germany

Workshop ITG FG 5.2.4 on "Traffic Management for Mobile Networks" München, March 13, 2012

Outline

- Multi-layer / multi-RAT deployments
- Inter-RAT mobility
- Traffic steering (TS) and MRO objectives
- Inter-RAT mobility problems / failure types
- MRO TS inter-working analysis
 - HO cause agnostic
 - HO cause aware
- Conclusion

Abbreviations:

Handover

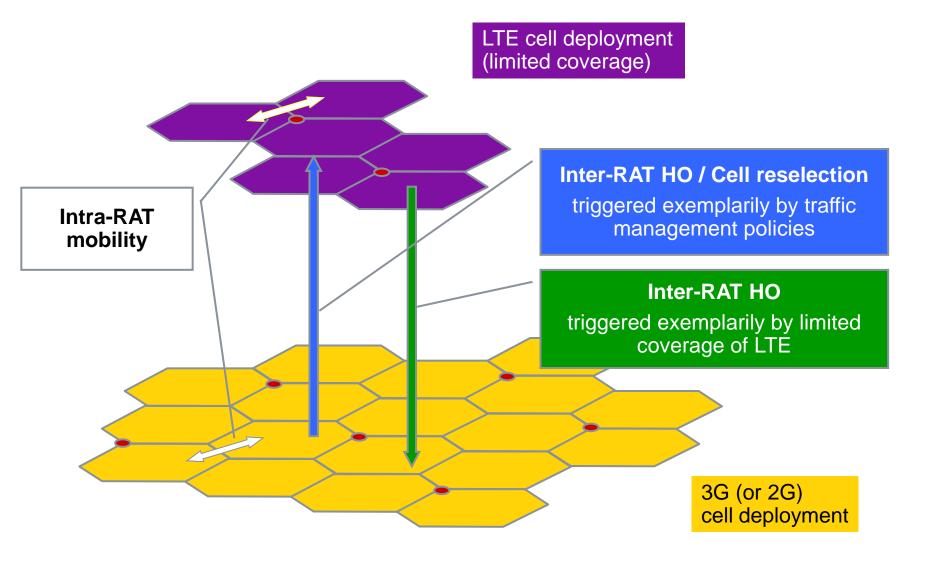
MRO: Mobility Robustness Optimization


RAT: Radio Access Technology

HO:

TS:

Traffic Steering Nokia Siemens Networks


Multi-layer deployment

Operators are faced with multiple overlapping radio network layers (multilayer networks) due to

- Evolving towards more efficient technologies (HSPA, LTE) while keeping legacy deployments
- Coverage and capacity layers (heterogeneous network)
- Provisioning of various UE capabilities

Inter-RAT mobility (cell change) use case

Traffic Steering (TS) objectives

Traffic steering in idle mode (Re-selection for camping in preferred RAT) Drivers:

- Enhanced connection setup times
- Reduced signalling and measurement complexity
- UE battery savings

Traffic steering in active mode (Inter-RAT handover to preferred RAT) Drivers:

- Load balancing, energy saving, maximizing network capacity
- Service dependent RAT change
- Change in user traffic demands

Mobility robustness optimization (MRO) objectives

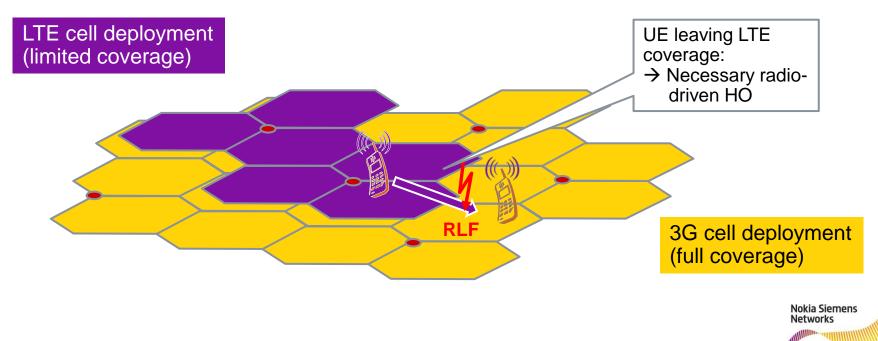
Generic MRO aspects

- Replacing or minimizing the human intervention of mobility optimization tasks
- Automatically adapting of the mobility-related cell parameters based on evaluation of performance counters
- Dynamically improving the network performance in terms of mobility in order to provide improved end-user experience as well as increased network capacity

Inter-RAT MRO aspects

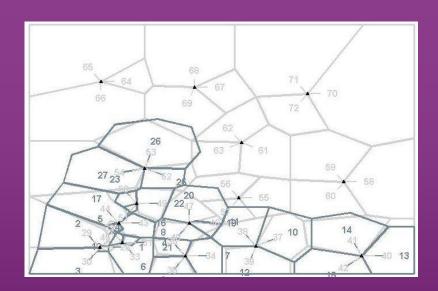
- Specific inter-RAT mobility problems
- Extension of root cause analysis among various RATs

Inter-RAT mobility problems


3GPP currently considers following inter-RAT MRO problems:

Problem type	Scenario	RLF	Status
Too late inter-RAT HO (LTE \rightarrow 3G)	Limited LTE coverage	yes	High prio in Rel'11
Too early inter-RAT HO (3G \rightarrow LTE)	Limited LTE coverage	yes	High prio in Rel'11
Too late inter-RAT HO (3G \rightarrow LTE)	LTE 800 in rural 3G limited to urban/suburban	yes	Low prio in Rel'11
Too early inter-RAT HO (LTE \rightarrow 3G)	LTE 800 in rural 3G limited to urban/suburban	yes	Low prio in Rel'11
Too early inter-RAT HO w/o RLF (LTE → 3G)	Limited LTE coverage	no	Specified in Rel'9 "Unnecessary inter-RAT HO"
Inter-RAT ping pong	both	no	Low prio in Rel'11

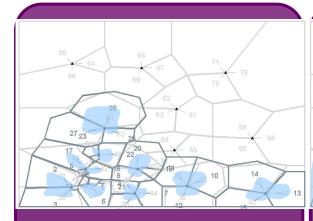
Example: Too late inter-RAT LTE-to-3G


Definition:

- RLF occurs while UE is connected to a LTE cell.
- Inter-RAT handover to 3G might have been initiated (e.g. target cell preparation is ongoing), but UE is still under control of LTE cell.
- UE reconnects to a 3G cell

Analysis with simple traffic steering rule

Scenario: Limited LTE coverage Case A: LTE \rightarrow 3G Case B: 3G \rightarrow LTE

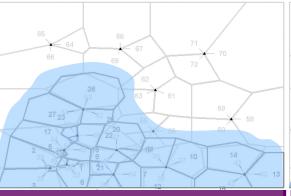

TS rule (exemplarily)

- LTE-capable UEs using data services should use LTE, i.e.
 - should stay in LTE as long as possible
 - should be handed over to LTE as early as possible

Limited LTE coverage (case A)

Handover: LTE \rightarrow 3G (leaving LTE area)

HO trigger: LTE inter-RAT mobility parameter B2 TS rule: Stay in LTE as long as possible



Conservative setting of mobility parameter in order to avoid RLFs

<u>Problem:</u> TS rule violated → reduced LTE coverage

MRO problem type: "Unnecessary inter-RAT HO" specified in Rel'9

→ MRO can react

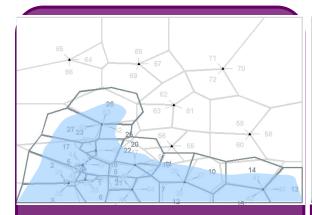
Aggressive setting of mobility parameter to follow TS rule

<u>Problem:</u> RLFs, missed HO

MRO problem type: "Too late inter-RAT HO"

→ MRO can react

Optimal parameter setting achieved by MRO


→ Maximum LTE coverage fulfils TS target

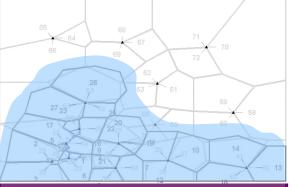
→ No RLFs fulfils MRO target

Limited LTE coverage (case B)

Handover: $3G \rightarrow LTE$ (entering LTE area)

HO trigger:Traffic steering in 3G (e.g. specific trigger event)TS rule:Enter LTE as early as possible

Relaxed setting of TSrelated mobility parameter in order to avoid RLFs


Problem:

TS rule violated

→ too late inter-RAT HO w/o RLF

 \rightarrow reduced LTE coverage

MRO problem type: n/a

Aggressive setting of TSrelated mobility parameter to follow TS rule

Problem: RLFs immediately after HO and reconnection in 3G

MRO problem type: "Too early inter-RAT HO"

→ MRO informs TS

Optimal setting is <u>not</u> achievable, since counterpart missing

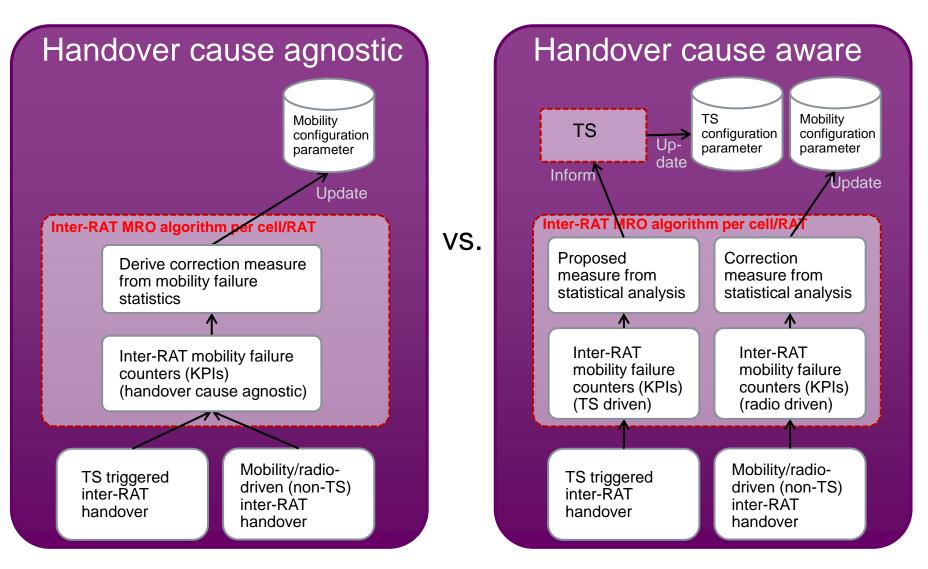
MRO and TS inter-working aspects

Case A (Limited LTE coverage && LTE \rightarrow 3G):

- Radio-driven HO, i.e. the related trigger parameters are under responsibility of MRO
- TS-related inter-RAT mobility problem type "Unnecessary inter-RAT HO" serves as counterpart for "Too late" RLF-afflicted handovers

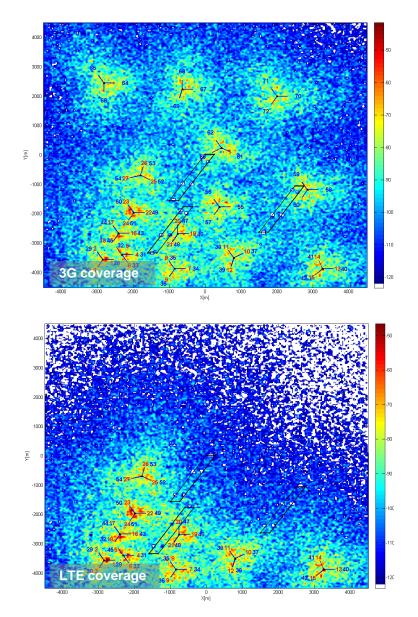
 \rightarrow correction of pure radio-related HO parameter

 \rightarrow no further TS inter-working, even though TS-related "KPI" is used


Case B (Limited LTE coverage && $3G \rightarrow LTE$):

- "pure" TS-driven HO dependent on operator specific policy as long as there are no 3G coverage issues
- TS is triggered by different criteria (incl. different HO trigger parameters), but in case of mobility problems MRO will least to detect and count them

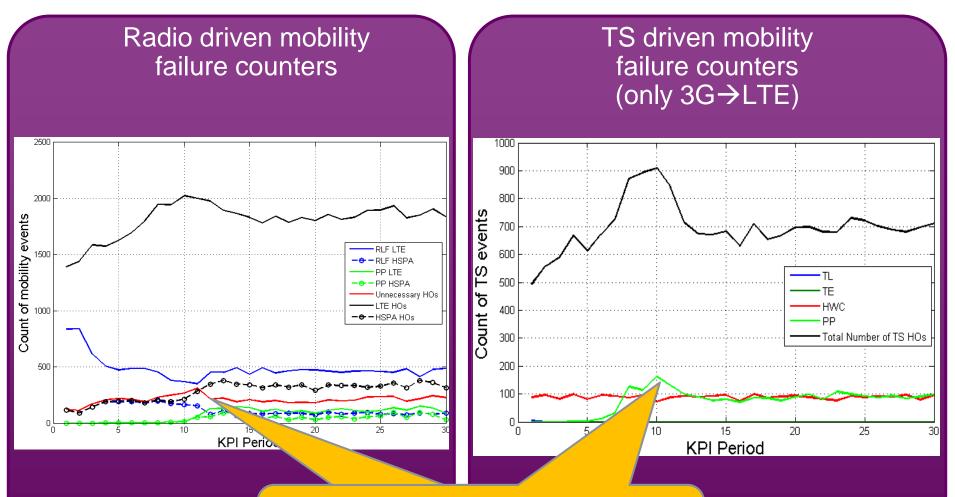
Nokia Siemens Networks


\rightarrow How should MRO treat the failures of TS initiated handovers?

MRO options for TS inter-working

Simulative investigation

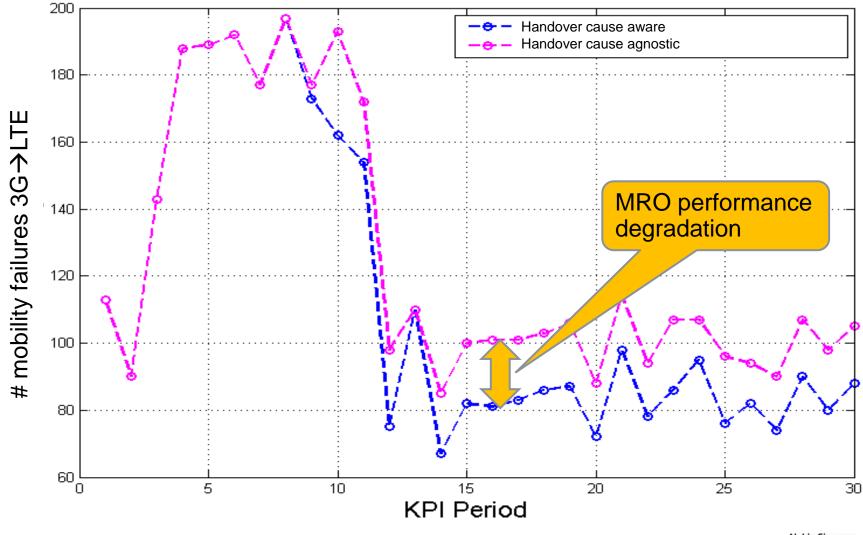
Inter-RAT MRO algorithm


A. Awada, B. Wegmann, I. Viering and A. Klein, "Self-Optimization Algorithm for Inter-RAT Configuration Parameters," IEEE International Symposium on Wireless Communication Systems 2011 (ISWCS'11), November 6-9, 2011.

 Inter-RAT mobility parameters being (cell-specifically) optimized:

RAT	Trigger parameter	Quantity	Initial setting [dBm]	MRO
LTE	B2_1	RSRP (LTE)	-125	yes
	B2_2	RSCP (3G)	-107	yes
3G	3A_1	RSCP (3G)	-110	yes
	3A_2	RSRP (LTE)	-122	yes
	TS_3A_1	RSCP (3G)	-96	no
	TS_3A_2	RSRP (LTE)	-118	no

Handover cause aware MRO treatment



Increase of PP of TS-initiated HOs resulting from changes done by MRO for radio-driven mobility parameters

15 © Nokia Siemens Networks

Workshop ITG FG 5.2.4 / 13.03.2012

MRO performance impact

Conclusion

Inter-RAT mobility ...

- due to traffic steering (e.g. load balancing) or
- radio driven when reaching end-of-coverage

Mobility failures irrespective of the cause are detected by MRO

Proper interworking of MRO and traffic steering

- MRO separates failures depending on handover cause
- MRO corrects non-TS failures automatically
- MRO informs TS about allowed/correct parameter setting.

Nokia Siemens Networks

Thank you !

 Nokia Siemens Networks
 Research Radio Systems

 Dr.-Ing.
 Phone: +49 89 5159-31560 Fax: +49 89 5159-4431560 Mobile: +49 173 3507281 Email: bernhard.wegmann@nsn.com