

Traffic Management in the European Project UniverSelf

Markus Gruber, Alcatel-Lucent Bell Labs

On behalf of UniverSelf

Factsheet UniverSelf

- Focus: Autonomic networks (wireline & wireless)
- Project start: September 2010
- Project duration: 3 years
- Manpower: ~1400 person months
- ▶ Budget: ~16.6 million \in (~10.5 million \in from European Commission)
- Coordinated by Alcatel-Lucent Bell Labs France
- Partners:

Finding the right method for a given problem

Governance and autonomic management of OFDM and MPLS segments Courtesy of Kostas Tsagkaris, University of Piraeus

"Operator-governed, end-to-end, autonomic joint network and service management"

- Objective is to provide a unified, goal-based, autonomic management system for the service deployment and/or new traffic accommodation on top of heterogeneous networks encompassing both OFDM-based RANs and MPLS-based backhaul/core segments
- Requires solution of RAN and Backhaul/Core network optimization problems that take into account operator Goals Policies
 - Autonomic management of OFDM-based segments
 - Autonomic management of MPLS-based segments
- Impact of governance policies into the algorithms

Governance and autonomic management of OFDM and MPLS segments Courtesy of Kostas Tsagkaris, University of Piraeus

- MPLS parameter optimisation: Load aware and optimal routing algorithms & protocols/Maximum-flow/Graph-theory
- Policy-based, green traffic engineering & Bio-inspired approaches

Impact of governance – policies into the algorithms

> Autonomic adaptation of objective functions, utility functions, constraints

Governance and autonomic management of OFDM and MPLS segments Courtesy of Kostas Tsagkaris and Panagiotis Vlacheas, University of Piraeus

6

Load balancing (general)

Courtesy of Johannes Lessmann, NEC

Courtesy of Siegfried Klein, Alcatel-Lucent Bell Labs

Comparison of the load balancing strategies handover (ho) and interference coordination (ic)

Comparison of potential Gains

Comparison of potential Gains higher user density at center cell edge

Heterogeneous networks – link usage

Courtesy of Zwi Altman and Richard Combes, Orange Labs

* Trigger Condition of Self Healing

Modeling (1/2)

- Complexity of network management is dramatically increasing as networks are progressively becoming more heterogeneous, ubiquitous and dynamic
 - there a need of modelling and understanding the dynamic behaviours of future networks in order to predict and control such "complexity"
- Introducing self-management and self-control functions is way for contributing to tame such increasing complexity; on the other hand, cascading and nesting of control loops and self-* mechanisms could easily lead to the emergence of non-linear network behaviours and instabilities during transients.
 - multiple phases (i.e. identical local behaviours could give rise to widely different global dynamics) causing the risk of state-phase transitions, capable of jeopardizing network performance
 Transition
 - A phase transition is caused by a sudden change of an order parameter of the network when a control parameter is varied across the critical point
 - Example:
 - Order parameter(s): certain QoS parameter(s), etc
 - Control parameter(s): network pressure, routing/forwarding strategies, etc

Modeling (2/2)

Courtesy of Antonio Manzalini, Telecom Italia

- Overall, network instabilities may have primary effects both jeopardizing the network performance and compromising an optimized use of resources
- There is a need to model and to make simulations and emulations for defining and validating the existence of stable states (with the related levels of performance) in a complex network, so to bring or maintain network behavior to desired states
- Loosely speaking, a network is said to be stable near a given state if one can construct a Lyapunov function that identifies the regions of the network state space over which such functions decrease along some smooth trajectories near the solution.
- Lyapunov stability theory can, in principle, provide us the required tools needed to define and analyze the stability problem of a network of FSMs.
 - An important advantage is that the approach doesn't require high complexity of computation, but on the other hand the difficulty lies in the definition of the proper Lyapunov function.

Future Networks: taming instabilities in highly dynamic and complex environments

→ Workshop *Future Network Stability* at FNMS, Berlin, June 2012

http://www.univerself-project.eu/

Deliverables D3.1 and D3.4