Context-Aware Resource Allocation for Cellular Networks

Magnus Proebster, Matthias Kaschub, Thomas Werthmann, Stefan Valentin magnus.proebster@ikr.uni-stuttgart.de stefan.valentin@alcatel-lucent.com 13.03.2012

Universität Stuttgart Institute of Communication Networks and Computer Engineering (IKR) Prof. Dr.-Ing. Andreas Kirstädter

Alcatel·Lucent 🕢 Bell Labs

Motivation

- **Modern Smartphones**: diverse traffic requirements from various applications
- \rightarrow Traffic is heterogeneous and bursty
- \rightarrow Load peaks can degrade the user's experience

Assumption: Bottleneck in mobile cellular networks \rightarrow Radio access link

Observation: Plenty of traffic can wait

- App downloads / updates
- Browser background tabs
- File downloads

Exploit information about user's context at the scheduler "Which part of the user's traffic can wait?"

Serve more users in the cell without reducing user satisfaction!

North America - Network Aggregate Peak Hours

Sandvine, "2010 Mobile Internet Phenomena Report"

Overview

Signaling & Transaction Framework Optimal & Heuristic Scheduler Simulation Results

Conclusions

Approach: Context signaling

- Signal information about application's environment
- More than just application awareness: Information on users' OS & environment
- Examples application foreground / background state, screen-saver, location, orientation, ...

➡Make the scheduler in the base station aware of context information

Approach: Transactions

Definition

- Transactions reflect all traffic between a user's request and its observable result
- Mapping of MAC / IP packets to application layer objects
- Transaction can be segmentation / aggregation of transport connections (e.g. TCP)
- QoS requirements referring to transactions

Advantages

- Scheduler considers user-visible objects relevant for user experience
- Allows to shift complete application layer objects in time
- Allows to reduce interleaving between transactions
 which is bad for transaction finish-times

Focus on user-visible latency & Quality of Experience

Illustration Example

Scenario

- Arrival of two transactions
- Constant bandwidth per user

Comparison

- Fair scheduler without context knowledge Distributes bandwidth equally
- CARA scheduler with context knowledge
 - Additional degree of freedom
 - Total finish time improved

"Put the latency where it doesn't hurt!"

Context Information Sources

- User
 - Explicit feedback
 - Preferences, configuration

Applications

- Type of application, transaction, priority, ...
- Activity (foreground tab?)
- Size of transaction (often estimation)

Platform

- Event source (click, timer)
- Parallel or interactive activity
- Reasonable defaults for application values
- Device / operating system
 - Screensaver, device orientation, proximity sensor
 - Foreground / background
- Network
 - Current and future network load

Utility Functions

How to make use of context information?

- Formalize user requirements
 → Utility functions
- Express individual latency requirements of a transaction
- Describe user experience in terms of transaction finish times
- Parameters are derived from context information (e.g., user focus)

Examples

- Foreground: Web pages
- Background: File Downloads
- Here: U(t) instead of U(r)
- Units: Transactions instead of single packets

Utility Optimization Problem

Context-aware resource allocation as a constrained maximization problem

Objective Function

maximize
$$U_{total} = \sum_{t} \sum_{T} U_T(t) f_{T,t}$$

Constraints

$$\begin{aligned} \forall T : \sum_{t} f_{T,t} &= 1 \\ \forall T,t : f_{T,t} &\leq \frac{1}{B_{T}} \left(\sum_{t_{1}=1}^{t} r_{T,t_{1}} \gamma_{T,t_{1}} \right) \\ \forall t : R &\geq \sum_{T} r_{T,t} \\ \forall T : B_{T} &= \sum_{t} r_{T,t} \gamma_{T}(t) \\ \forall t < t_{0T} : r_{T,t} &= 0 \end{aligned}$$

- Assumes ideal channel and traffic knowledge
- Determines the optimal scheduling solution for a predefined time span
- Size of the solution space (decision variables): $O(n_T \cdot n_{TTI})$

Resource Allocation Comparison

Proportional Fair

- Focus on channel conditions
- Interleaved resource allocation
- \rightarrow Good for capacity
- \rightarrow Not so good for finish times

Transaction-based

- Focus on finish times
- Channel-aware
- Context-aware (Utility-max)
- \rightarrow Reduced finish times, higher Utility

2-Step CARA Scheduling Heuristic

Step 1: Sequence Planning

- Optimize utility by planning a sequence of active transactions
- Account for average & predicted channel situations
- \rightarrow Reduces interleaving, increases overall utility

Step 2: Accounting for Short-Term Channel Fluctuations

- Channel fluctuations can be faster than transaction granularity
- Deviate from scheduling sequence in dependence of instantaneous channel condition
- \rightarrow Increases total cell throughput

Simulation Scenario

- Cellular network, 7 sites (center cell evaluated)
- OFDMA System (e.g., 3GPP LTE)
 2 GHz band, 10 MHz bandwidth
- Channel model includes
 - Path loss
 - Shadowing
 - Fast fading (Rayleigh, Veh. A, 10 km/h)
- Shannon capacity, SINR clipped at 20 dB
- Transmission time interval: 1 ms
- 20 user equipments
- Multiple transactions per UE possible
- Simulation duration: 10 s
- Traffic Mix
 - Foreground: HTTP
 - Background: FTP

Utility Improvements with CARA Scheduling

Utility vs offered load

- Utility range 1 (good) .. 0 (bad)
- Load variations by changing IAT
- System fully occupied at ~20Mbit/s

- Utility of PF strongly decreases for higher load
- EDF considers utility but is not channel-aware
- CARA heuristics maintain good utility performance even at high loads
- Strict sequence (no short-term channel-adaptation) offers best utility
- Serve more users without decreasing user experience!

Cell Throughput vs Utility

- PF achieves good cell throughput but bad utility
- EDF not channel-aware → worst throughput results
- Combination of CARA and Proportional Fair delivers best throughput AND utility
- Trade-off in CARA-PF combination with penalty factor

Strong utility increase without throughput degradation possible

Exploit context information for scheduling by new transaction-based framework From packet-level to transaction-level \rightarrow Plan resource allocation into the future Quality of experience expressed by utility functions \rightarrow Improve the user observable result

Practical scheduling heuristic

Combines the advantage of opportunistic and context-aware scheduling

Increases the number of users at the same utility level

Outlook

Improved scheduling heuristic, publication in preparation

- [1] M.Proebster, M.Kaschub, and S.Valentin "Context-Aware Resource Allocation to Improve the Quality of Service of Heterogeneous Traffic", IEEE ICC 2011, Kyoto
- [2] M.Proebster, M.Kaschub, T.Werthmann, and S.Valentin "Context-Aware Resource Allocation for Cellular Wireless Networks", submitted to EURASIP JWCN