Dynamic System Level Simulations in faster then realtime

Presentation at ITG Workshop, UMIC Aachen, 14july2011 Andreas Lobinger

(Ingo Viering, Martin Döttling, Szymon Stefanski)

The Why and How

- We want to observe what 'the system' does.
- Therefore we build a mathematical model.
- We write a program in accordance with that and equip it with reasonable parameters (or just sweep) and observe 'the system'.
- For a nearer definition of 'the system':
 - A set of basestations
 - A (larger) set of UEs
 - An radio interface between them
- Dynamic: We expect changes over time OR expect interactions within 'the system'.
- Changes over time: service/traffic, user position, basestation parameters etc.

2

Nokia Siemens

Networks

Remember: We need a model

- In Radio Simulations there are two classical paths:
- 1. Drop the interaction and work with constant signals.
- 2. Model in detail.
- For the 2nd approach, the question: Which level of detail?

So let's say, you want to look at a LTE DL system

- The level of detail (for our model) is (seems) to be defined by the details of the system.
- As LTE DL is an OFDMA system, we need to look at OFDM symbols ?
- ... or resource blocks i.e. symbols by set of subcarriers?
- ... or transport blocks i.e. a set of resource blocks scheduled together?
- The answer lies somewhere in the middle, but what we need to cover is
- RRM (radio resource management) aka scheduling (+link adaptation)

And the interaction?

- To make a long story short: It's Interference (the I in SINR)
- Interference usually (at least in this LTE DL sense) is an uncoordinated, unpredictable, non-controllable term in the SINR calculation
- AND: it's a sum
- Nice thing: It depends on the load in other cells and only on that.
- First Idea:

Formulate user specific SINR as function of Signal, other cells Signal and load

Back to RRM

- Scheduling and Link Adaptation is the modern tooling to approach the boundary of channel capacity: Shannon bound
- So turn it around: Can we use a channel capacity to derive the load?
- -> in every time step, from the user SINR and a certain expected throughput (think packet-size) we can calculate the needed resources
- Simplification: fix the expected throughput (CBR, GBR service), assume QoS scheduling
- Second idea:

In every time step calculate a cell load based on user SINR and a look at capacity

... so closing the loop

- SINR = function(load)
- Load = function(SINR) ?
- We use an estimate of the load by looking at the previous time step.

What's this time step all about?

- Our (main) idea is to keep the (simulation) time step short enough to be able to look at all dynamic effects, but (way) longer than the real RRM granularity.
- Also to make a long story short: 1s to 50ms

Program performance, simple MATLAB implementation		Simulation setup: 600s (= 600 steps) 800 users (~15u / cell) 57 cells		
Angle in hor/ver	MATLAB profiler	_	_	
Guess what	Function Name	<u>Calls</u>	<u>Total</u> <u>Time</u>	<u>Self Time</u> *
	cart2sph	600	10.841 s	10.841 s
Wrap-around in channel	pathloss and beampatterns2	600	23.786 s	8.761 s
	distance_subroutine	600	8.674 s	8.487 s
SINR calc.	_ channel_and_sinr_log	600	35.320 s	6.801 s
main	_ <u>son</u>	1	56.417 s	4.947 s
	inpolygon>vec_inpolygon	1202	4.120 s	4.120 s
Wrap-around in mobility	<u>log10</u>	1803	3.888 s	3.888 s
	logSum	600	3.092 s	3.013 s
Interference calc.	Life cycle status			Nokia Siemens Networks

8 © Nokia Siemens Networks 2011

The steps for simplifications

- Abstract the RRM by a channel capacity (average)
- Calculate the user SINR by estimated cell loads
- Calculate the cell load by user SINR, a scheduling assumption and user traffic.
- Does it work?
- OK, so when does it not work?

Contacts and references

Andreas Lobinger <u>andreas.lobinger@nsn.com</u>

Paper:

ICC09

"A mathematical perspective of self-optimizing wireless networks" Viering, Döttling, Lobinger

EURASIP Journal on Wireless Communications and Networking (online) "Efficient Uplink Modeling for Dynamic System-Level Simulations of Cellular and Mobile Networks" Viering, Lobinger, Stefanski

Usecase : SON -> load balancing with moving load

Another Simulator example

