Routing for Real-time Constrained Packet Flows

Neda Petreska, Christian Dombrowski, James Gross VDE/ITG Fachgruppe 5.2.4 Workshop on Internet of Things Bremen, 17.02.2011

Machine-to-Machine Communication & QoS

- Traditionally, wireless networks are considered for:
 - Soft real-time applications
 - Best-effort applications
- Recent interest in Machine-to-Machine (M2M) communication
 - Part of the ,Internet of Things' vision
- Several applications in M2M have much tougher QoS constraints (,hard real-time'):
 - Control applications
 - Industrial automation
 - Context-aware distributed systems
 - Cyber-physical systems
- Research focus in this work:
 - Can we meet such QoS requirements at all?
 - Which models and algorithms can be used?

Research Challenges & Contributions

Consider transmission of a flow over a given multi-hop path:

- Can the given path accept the flow?
- What are the optimal resource allocations along the path (power and time)?
- Consider an arbitrary multi-hop network between two machines:
 - Can the network accept the flow?
 - What is the most efficient forwarding path for the flow?

General System Model

- Stationary, multi-hop network
- Deterministic medium access, fixed time slots
- Application characteristics
 - lacktriangle Packets with size D, end-to-end deadline t , success probability p
 - Packet interarrival time much bigger than end-to-end deadline

Link model

- Rayleigh fading channel
- No interference from other nodes
- Only average CSI at transmitter
- Shannon capacity as power-rate function
- Nodes can set transmit power within a certain range $[0; P_i^{max}]$
- Marginal queuing behavior

Basic Relationships

- Each link is characterized by:
 - Probability for successful transmission

$$p_i: \prod_{i=1}^n p_i \ge p$$

Available time amount for forwarding the packet

$$t_i: \sum_{i=1}^n t_i \le t$$

Transmit power needed for a direct transmission:

$$P_{tx} = \frac{BN_0}{h_{PL}^2 \ln(p)} (1 - 2^{\frac{D}{tB}})$$

Total end-to-end energy consumption:

$$E(n) = \sum_{i=1}^{n} \frac{BN_0}{h_i^2 \ln(p_i)} (1 - 2^{\frac{D}{t_i B}}) t_i$$

Graphical Representation of the Energy Behaviour

- Convex behaviour in case of equally distanced relays
- Left: Bigger demanded data rate → bigger energy consumption
- Right: Bigger end-to-end delay → smaller energy consumption

Optimal Power Distribution

- Fixed time slot per hop $t_i = \frac{t}{n}$
- Minimum transmit power theorem:
 - The transmit power that each node on a path with n randomly spaced relays has to use in order to forward a packet of size p with a QoS parameters p and p is defined by

$$P_i = \frac{BN_0}{\sqrt{h_i^2} \ln(p)} \sum_{j=1}^n \frac{1}{\sqrt{h_j^2}} \left(1 - 2^{\frac{nD}{tB}} \right)$$

Probability Assignment Strategies

- Probability assignment strategies
 - Distance Independent

$$p_i = \sqrt[n]{p}$$

Lagrange

$$p_i = \exp\left(\frac{1}{\sqrt{h_i^2} \sum_{j=1}^n \frac{1}{\sqrt{h_j^2}}} \ln(p)\right)$$

 Results derived by means of simulation and averaged over more than 10000 replications

Routing Scenario

- Find the most energy-efficient path that satisfies the end-to-end requirements for a source-destination pair
- Traditional routing schemes fail to locate the minimal energy path
- Modify Floyd-Warshall algorithm additionally store the number of hops between the source and the destination
- Algorithm's complexity $\Omega(N|V|^3)$, where $N = \lceil \frac{t}{t_{hop}} \rceil$

UMIC

Routing Algorithm

Pseudo code:

- Distribute network information among nodes
- Define $N = \lceil \frac{t}{t_{hop}} \rceil$ Define link weights as $\frac{1}{\sqrt{h_i^2}}$
- For n=1..N do
 - $^{\square}$ Find minimal energy path with exactly n hops (modified Floyd-Warshall Algorithm) according to:

$$E = \frac{1}{n} \frac{BN_0 t}{\ln(p)} (1 - 2^{\frac{nD}{tB}}) \left(\sum_{i=1}^{n} \frac{1}{\sqrt{h_i^2}} \right)^2$$

- $^{\square}$ If n-hop shortest path exists:
 - Compute associated energy

else

- Set energy to $+\infty$
- lacktriangle Find the minimal energy path from set with at most N elements

Concluding Thoughts

Initial study on providing hard real-time QoS in multi-hop networks for M2M communication

Contributions:

- Optimal power allocation along a path
 - → Determines if a given path can provide required QoS at all
- Efficient routing algorithm for determining most efficient path in an arbitrary multi-hop network
 - → Can the network provide the QoS requirements at all?

Future Work

- Per-hop queuing behavour
 - Stochastic Network Calculus methods
- Self-interference
 - Increased energy consumption
- Multipath routing and back-up paths
 - Find n distinct, feasible routes with an optimal resource allocation
 - Intermediate back-up routes
- Currently working on a prototype

