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Motivation

Assumption

• Operators want to achieve a high user satisfaction

• This can be achieved by ensuring a certain fairness in a cell

→ Also users with bad channel conditions get an adequate service rate

How can fairness be measured?

→ With the NGMN fairness requirement

Why is it difficult to adjust fairness?

• Trade-off: Fairness ↔Total cell throughput

– Too much fairness: Waste of cell capacity

– Unfairness: Starvation of cell edge users

• Parameters to achieve a fairness-level

are cell-specific and vary dynamically

(e.g. with cell load and user distribution)
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Approach

Goal

Improve the system throughput with an optimal and dynamic fairness adjustment

How do we get there?

• Determination of relevant 

scheduler parameters for fairness

• Development of an autonomous 

controller adjusting the level of 

fairness

Advantages

• Self-optimizing system that does not require additional expenses

(no human interactions needed)

• Operator gets the possibility to easily adjust the fairness level

• Operator does not need to know the underlying scheduling algorithm

• Maximization of the system capacity
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NGMN Fairness Requirement

"100-x% of the users should have at least x% of the normalized throughput"

• Corresponds to a straight line in the 

CDF-plot of normalized user rates

• Shapes of the normalized user 

throughput CDF

– Equal rate: step function at 1

– Fair distribution is completely on the 

right-hand side of the requirement

– Differences in system throughput

are hidden by normalization

→ Very useful in wireless networks

– Providing all users with an equal rate is very inefficient

– Not too restrictive, offers flexibility

– Distribution-based metric robust against channel fluctuations

→ NGMN requirement adopted by 3GPP, IEEE and others
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Scheduling Algorithm

Alpha-Fair Scheduler with Minimum Rate Constraint

Parameters

• α controls the fairness achieved by proportional fair

• MBR (Minimum Bit Rate) is the rate ensured by the token counter

→Other schedulers allowing to regulate fairness are also possible!

[1] M. Andrews et al: "Optimal Utility Based Multi-User Throughput Allocation subject to Throughput
 Constraints", 2005
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Simulation Scenario

• Downlink only

• Channel model & interference

– Pathloss, Shadowing & Fast fading

– Constant interference from neighbour cells

– SISO transmission

• Seven-site scenario

– Center cell considered

– Isotropic antennas at the base stations

• Ideal CQI reporting

• Shannon Capacity; clipped at -5dB and 26dB 

• Users distributed equally in cell

– Fixed user locations

– Handover at the beginning

• Full buffer simulations
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Parameter Influence on Fairness

Results

• α and MBR influence the fairness significantly

• Without MBR, a high α value

is needed to achieve fairness

• With MBR=100 kbps, α can be reduced
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Fairness Parameterization and Cell Throughput

Results

• Increased fairness → reduced cell throughput

• MBR has a higher impact than α

→ Optimization of the fair operating point with α for a given MBR

to achieve a higher cell throughput
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Throughput Gains from Dynamic α-Variation

α-Values to Achieve Fairness

• Depend on MBR-setting

(assumed to be fixed)

• Change with the load in the cell

– Increasing trend without MBR

– Decreasing trend with MBR

Throughput Gains

• Dynamic α-adaptation vs. 

static configuration

→ For 200 kbps MBR and 20 users:

mean throughput increased by ~40%
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Controller Building Blocks

Properties

• Closed-loop feedback system

• Acts on much longer time-scales than the scheduler (in the order of seconds)
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Controller Fairness Determination

How does it work?

• User rates are collected during a 

sampling interval

• From these rates, fairness 

quantiles can be obtained by 

sorting and normalizing

• The quantiles have to be matched 

with the fairness requirement

→ After fairness determination, a control action follows

• Not enough fairness → Increase α

• Too much fairness → Reduce α
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Controller Evaluation - Transient Behaviour

Simulation Parameters

• Number of Active users

– 15 for t = [0 s; 50 s)

– 30 for t = [50 s; 100 s]

• Sampling Interval: 1 s

Observation

• Quick adaptation to changed 

load situation

• Throughput gain: ~10%-17%

(compared with static configuration)

• Static configuration is not optimal 

for half of the time
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Fairness Adaptation w/o Controller

Without controller

• With increasing number of 

users, the system gets fairer

→ Waste of cell capacity
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Fairness Adaptation with Controller

Without controller

• With increasing number of 

users, the system gets fairer

→ Waste of cell capacity

With controller

• All CDFs lie close to the 

fairness criterion

• Predicted α-configurations 

confirmed
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Throughput Gain with Controller

Reference

• MBR is fixed and constant in 

both cases

• Static reference for α 

such that system is always fair 

(conservative assumption)

Observations

• Good accordance to 

predicted gains

• Slight degradation 

due to fluctuations

• Acceptable performance

for the reference point
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Conclusions

• High throughput gains are possible by adjusting fairness adaptively

– Inherent trade-off between cell throughput & fairness

– Optimization of scheduler flexibility increases diversity gain

• Design of a self-optimizing controller instance

– Optimal throughput in the cell achievable while still maintaining fairness

– No human interaction needed to tune scheduler parameters

– Automatic adaptation to site-specific constraints 

(independent of the set of boundary conditions)

→ Increased users satisfaction and reduced costs per bit

• The demonstrated architecture can be applied to any scheduler

allowing to parametrize the fairness level


