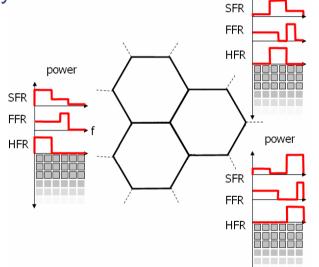
Comments on the coupling of interference coordination and resource allocation in OFDMA networks

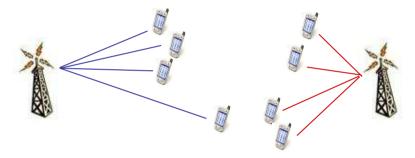
James Gross, Han Zhou VDE Fachgruppe 5.2.4 / Stuttgart 06.10.2010



Motivation I

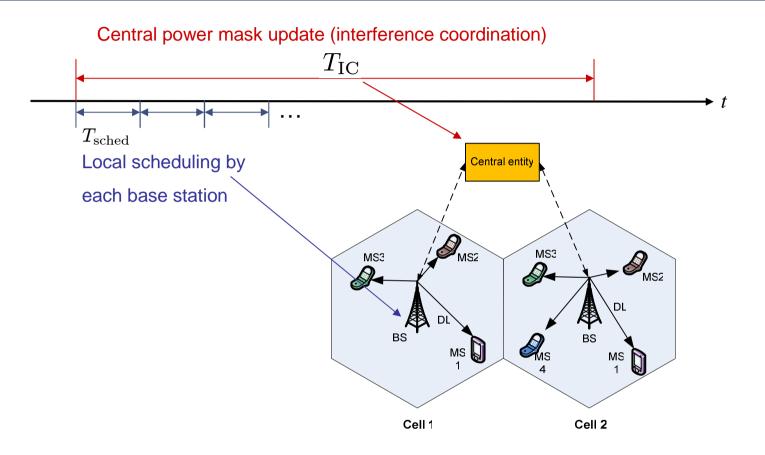
- Reuse 1 networks can benefit from power masking
- Different power mask concepts studied in the literature:
 - Hard frequency reuse
 - Fractional frequency reuse
 - Soft frequency reuse

Well known that FFR and SFR outperform HFR and flat power masks significantly


M. Bohge, J. Gross, A. Wolisz, "Optimal Power Masking in Soft Frequency Reuse based OFDMA Networks," in *Proc. of European Wireless Conference (EW'09)*, Alborg, Denmark, May 2009.

Motivation II

However, static power masking (either FFR or SFR) is vulnerable to load imbalances in the cells


→ Concepts like adaptive soft frequency reuse currently discussed Main idea: Update periodically the power masks according to load

- Within each period base stations perform local scheduling
- Contribution of this talk: Dependence between local scheduling and power masking
 - Do we need to account for the multi-user scheduling gain?
 - What should be guidelines?

System Model

- Mapping of instant. SINR to rate, i.e. $\mathcal{F}(\gamma) = \log_2 (1 + \gamma) \gamma$
- Load: VoIP packet flows, maximum queueing delay of 50 ms
- Only considering the downlink in the following

Local Scheduling

BS performs local scheduling independently every T_{sched} :

- Power mask (power setting per RB from central entity)
- Current channel state information (SINR feedback per RB)
- Queue state
- Objective: minimize the queuing delay by RB assignment

$$\begin{aligned} \max & \sum_{j} \sum_{q} y_{j,q} \cdot d_{j,q} \\ \text{s. t.} & \sum_{n} x_{j,n} \cdot \mathcal{F}(\gamma_{j,n}) \geq \sum_{q} y_{j,q} \cdot S_{j,q} , \ \forall j \\ & \sum_{j} x_{j,n} \leq 1 , \ \forall n \end{aligned}$$

- *j* : Terminal index
- *n* : RB index
- *q* : Packet index
- γ : SINR
- *d* : Packet delay
- s : Packet size
- x: RB assignment (0/1)
- y: Packet assignment (0/1)

- ,Central entity' updates power masks for several cells every T_{IC}
 - Power masks generated based on signal and interference gains
 - Objective: Maximize minimum rate among all terminals (for VoIP support)

max

 ϵ

s. t. $\sum_{n} x_{j,n,k} \cdot \mathbb{E} \left[\mathcal{F} \left(\gamma_{j,n,k} \right) \right] \ge \epsilon , \ \forall j,k$ $\sum_{j} x_{j,n,k} \le 1 , \ \forall n,k$ $\sum_{n} p_{n,k} \le P_{\max} , \ \forall k$

j : Terminal index

- n : RB index
- k: Cell index
- γ : SINR
- *P* : Transmit power budget
- x: RB assignment
- *p* : Power assignment

Note: Only power masks reported back to base stations

Coupling IC with Scheduling

- What is a good expression for $E[\mathcal{F}(\gamma)] = E[\log_2(1+\gamma)]$?
 - Assume exponentially distributed signal and interference gains:

$$g^s \sim \operatorname{Exp}(\frac{1}{\rho^s}) \qquad \quad g^i \sim \operatorname{Exp}(\frac{1}{\rho^i})$$

Fixing transmit powers yields a new random variable as SINR:

$$\gamma = \frac{p^s \cdot g^s}{p^i \cdot g^i + \sigma^2}$$

$$\bullet \text{ PDF} \qquad f_{\gamma}(y) = \left[\frac{\sigma^2}{P_I y + P_S} + \frac{P_I P_S}{(P_I y + P_S)^2}\right] \cdot e^{-\frac{\sigma^2}{P_S} y}$$

• CDF
$$F_{\gamma}(y) = 1 - \frac{P_S}{P_I y + P_S} \cdot e^{-\frac{\sigma^2}{P_S}y}$$

where
$$P_S = p^s \cdot \rho^s$$
 $P_I = p^i \cdot \rho^i$

F. Naghibi and J. Gross, "How bad is interference in IEEE 802.16e systems?," in *Proc. of the 16th European Wireless Conference (EW'10)*, Lucca, Italy, April 2010.

UMIC

Naive evaluation: simply divide average received power by average interference power

$$\operatorname{E}\left[\mathcal{F}\left(\gamma\right)\right] = \log_2\left(1 + \frac{P_S}{P_I + \sigma^2}\right)$$

Static evaluation: Accounting for the true average of the ,capacitated' SINR r.v. yields instead:

$$\operatorname{E}\left[\mathcal{F}\left(\gamma\right)\right] = \int_{0}^{\infty} \log_2\left(1+\gamma\right) \cdot \left[\frac{\sigma^2}{P_I \cdot \gamma + P_S} + \frac{P_S \cdot P_I}{(P_I \cdot \gamma + P_S)^2}\right] \cdot e^{-\frac{\sigma^2 \cdot \gamma}{P_S}} d\gamma$$

However, base stations are performing dynamic resource allocation !

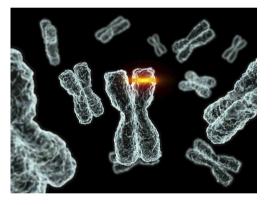
Coupling IC with Scheduling III

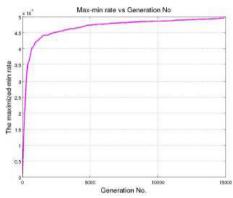
How to account for multiuser scheduling gain?

- Typical resource blocks assigned by local scheduling are much better than represented by the ,static' SINR r.v.
- Use order statistics to account for scheduling gain:

$$\mathbb{E}\left[\mathcal{F}\left(\gamma\right)\right] = \int_{0}^{\infty} \log_{2}\left(1+\gamma\right) \cdot A\left[1 - \frac{P_{S}}{P_{I}\cdot\gamma+P_{S}} \cdot e^{-\frac{\sigma^{2}\cdot\gamma}{P_{S}}}\right]^{A-1} \\ \left[\frac{\sigma^{2}}{P_{I}\cdot\gamma+P_{S}} + \frac{P_{S}\cdot P_{I}}{(P_{I}\cdot\gamma+P_{S})^{2}}\right] \cdot e^{-\frac{\sigma^{2}\cdot\gamma}{P_{S}}} d\gamma$$

Parameter to control: A


Refer to this as <u>dynamic evaluation</u>


J. Gross, "Admission Control based on OFDMA Channel Transformation," in *Proc. of 10th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)*, Kos, Greece, June 2009.

UMIC

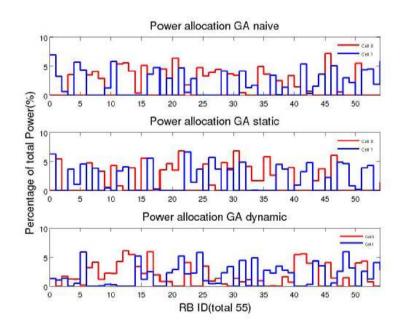
Computation of Power Masks

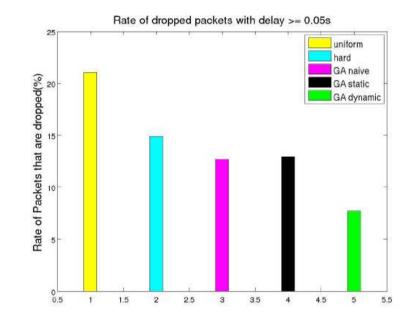
- Recall the power mask optimization problem: gets quite complex with above expression for expected capacity!
- Power masks are computed by genetic algorithm

- Optimization variables (power masks and resource block assignments) taken as <u>chromosome</u>:
 - Then repeat the cycle (= 1 generation):
 - Selection \rightarrow Crossover and Mutation \rightarrow Correction \rightarrow Evaluation
 - Best chromosomes of previous phase taken as input for next power mask generation

Performance Evaluation

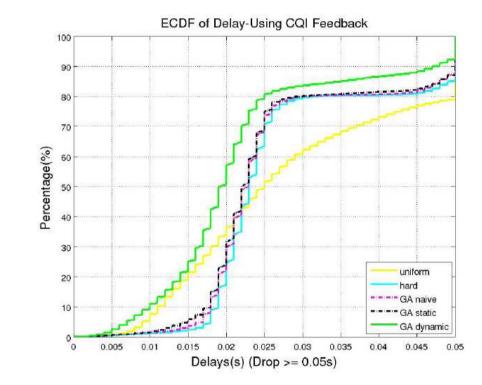
Evaluate performance by simulations


- Parameter:
 - ^D 2 cell scenario (only one sector), 600 terminals
 - VoIP packet size 288 bits, IAT of 20 ms per flow
 - Local scheduling every 1 ms
 - Power mask update every 100 ms
 - Equal path loss/shadowing/fading model for all terminals
 - Packet dropping threshold: 50 ms
- Metrics:
 - Average drop rate
 - ECDF of the packet delay
- Compared schemes:
 - Uniform power mask
 - Reuse 2
 - Adaptive power mask (naive, static, dynamic)



Performance Evaluation II

Power masks


Packet drop rate

Performance Evaluation III

~ 50 more VoIP clients supported if scheduling gain taken into account!

Conclusions

Accounting for multi-user diversity scheduling in interference coordination is crucial!

- Otherwise, no gain seen from interference coordination!
- Is there a correct way of coupling IC with resource allocation? Order statistics is a candidate to do so …
- Not shown here: some performance dependency on the factor A

Adaptive SFR can yield significant performance gain

- Work in progress:
 - ^D Tune GA to get better results
 - Switch to scenario with more cells

