DR. CHRISTIAN HOYMANN ERICSSON RESEARCH, AACHEN

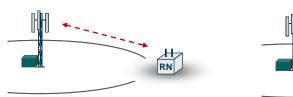


## JULY 8, 2010 ITG FACHTAGUNG – IMT ADVANCED

## RELAYING IN 3GPP LTE






- Motivation and Scenarios
- > 3GPP LTE Relaying
  - Architecture
  - Radio Protocols
- Performance
- Summary & Conclusion



Higher data rates

## MOTIVATION

Relaying promises...





Coverage-area extension

Data-rate extension

- increased coverage and/or cell-edge performance
  - which is especially useful since
    - > LTE will operate on high carrier frequencies, i.e., 2.6GHz
    - > UL SINR becomes Tx power limited when transmitting broadband at the cell edge
    - > Majority of mobile traffic is generated indoor
- cost efficient operation and reduced site acquisition costs
  which is especially useful since the future demand for high capacity will result in ultra-dense deployments of network nodes



## DEPLOYMENT SCENARIOS

#### Urban Broadband (Improved Indoor)



- Improve (UL) cell edge data rate
- SINR noise limited due to severe shadowing, e.g., indoor, in street canyons ...
- New sites, planned indoor/outdoor deployment below rooftop
- Possible in case of low/medium load
  - $\rightarrow$  Future evolution to Picos

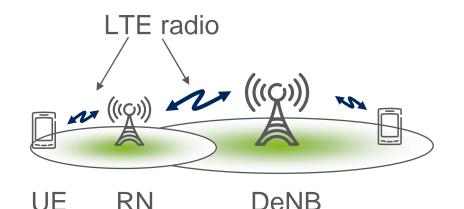
#### Rural Coverage (Initial Roll-out)



- Extend coverage
- SINR noise limited due to large distances
- New sites, planned outdoor deployment above rooftop
- Can be addressed with other solutions e.g. microwave



- Motivation and Scenarios
- > 3GPP LTE Relaying
  - Architecture
  - Radio Protocols
- Performance
- Summary & Conclusion




ERICSSO

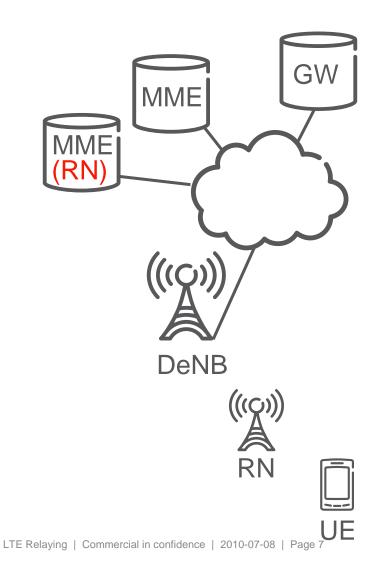
## **RELAYING IN 3GPP LTE**

#### History

- Studied during 2009
  - Study Item on LTE-Advanced
- Standardization during 2010
  - > Ericsson is LTE Rel.10 Work Item Rapporteur



DeNB

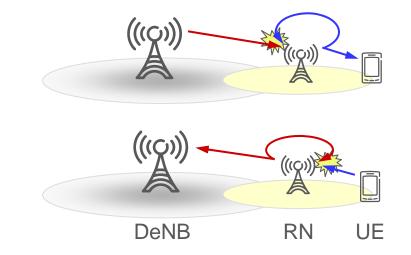

- > Objective
  - Inband and outband relaying
    - Access and backhaul on same or different carrier
  - Relay Node (RN) cell appears as a regular cell distinct from the donor eNB (DeNB) cell

UE

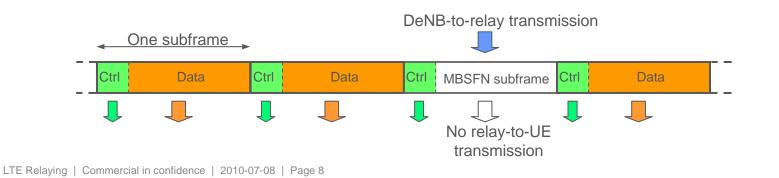
- > Backward compatible access link
- Radio protocols terminate in the relay
- UEs should be able to connect to the donor cell



## **3GPP ARCHITECTURE**




- DeNB provides proxy functionality, hiding the RNs from MMEs / GWs serving the UEs
  - The RN is seen as a new cell under the DeNB
  - The DeNB appears to the RN as an MME (for S1) and as an eNB (for X2)
- DeNB provides Gateway-like functionality for the RN
  - creates a session for the RN
  - manages EPS bearers for the RN
- MME (RN) functionality for MMEs serving the RNs are supported by the "normal" MMEs




## INBAND RELAY

- Due to self-interference RNs cannot simultaneously
  - Transmit on access (DL) and receive on backhaul (DL)
  - Receive on access (UL) and transmit on backhaul (UL)



- RN separates backhaul and access in time
  - Access (backhaul) link operates on access (backhaul) subframes only





## IMPACT OF INBAND RELAYING

- Backhaul Control Channel (R-PDCCH)
  - For control information to RNs which are not able to read the normal PDCCH

#0 #1

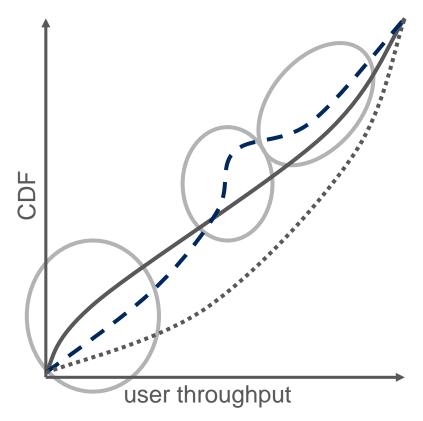
- Relay Timing
  - DeNB-RN synchronization
  - Tx-RX switching at RN

 #2
 #3
 DL assignment
 UL grant

 #4
 Image: Constraint of the second se

**Backhaul Data** 

- RRC configuration of backhaul subframes
- The RN might not be able to listen to paging and system information updates
  - Dedicated signaling




- Motivation and Scenarios
- > 3GPP LTE Relaying
  - Architecture
  - Radio Protocols
- Performance
- Summary & Conclusion



## QUALITATIVE PERFORMANCE

- single hop
- inband relaying
- ••• outband relaying



- Inband relaying
  - Improved coverage and cell-edge bit rate due to signal regeneration
  - Reduced peak rate for relay users due to backhaul subframes
  - Degraded throughput for non-relay users due to increased interference
- Outband relaying
  - Improved capacity
  - But larger spectrum demand
  - Even better when migrating to Pico



- Motivation and Scenarios
- > 3GPP LTE Relaying
  - Architecture
  - Radio Protocols
- Performance
- Summary & Conclusion



## SUMMARY & CONCLUSION

- > Future mobile radio networks need to provide
  - wide area coverage
  - excellent (cell-edge) data rates
  - low costs per bit
- Relaying is one feature (among others) to meet those requirements
- > Relaying will be introduced in LTE Rel.10
  - Inband relaying extends coverage
  - Outband relaying increases capacity in addition
  - Potential evolution path to Pico basestations



# ERICSSON