

Backhaul Requirements for Centralized and Distributed Cooperation Techniques

Dr. Stefan Brück Qualcomm CDMA Technologies

8th July 2010

Overview

- The LTE Architecture
- The X2 Interface in LTE Release 8
 - An introduction to the X2AP protocol
- Categories of Downlink Coordinated Multipoint (CoMP)
- Two Implementation Examples
 - Centralized Joint Transmission
 - Decentralized Coordinated Scheduling/Beamforming
- X2AP Protocol Extensions
 - Examples for the considered CoMP schemes*)
- Bandwidth and Delay Requirement Analysis for Downlink CoMP

Conclusions

^{*)} S. Brueck, L. Zhao, J. Giese, M. A. Awais, "Centralized Scheduling for Joint-Transmission Coordinated Multi-Point in LTE-Advanced" and J. Giese, M. A. Awais, "Performance Upper Bounds for Coordinated Beam Selection in LTE-Advanced" in Proceedings of the ITG/IEE Workshop on Smart Antennas, Bremen (WSA'10), Germany, 23. – 24. February 2010

The LTE Architecture

EPC = Evolved Packet Core

- The core network is packetswitched only
- The E-UTRAN consists of one node only
- S1 interface between S-GW/MME and eNB
 - Logical many-to-many interface
 - Supports procedures to establish, maintain and release E-UTRAN Radio Access Bearers
 - Supports transfer of NAS signalling messages between UE and EPC
- X2 interface between eNBs
 - Logical point-to-point interface
 - Seamless mobility
 - Interference management
 - Load management

X2 Protocol Structure

- Clear separation between radio network and transport network layers
 - The radio network layers defines interaction between eNBs
 - The transport network layer provides services for user plane and signaling transport

X2 Application Protocol (X2AP)

- The X2AP is responsible for providing signaling transport between eNBs
 - Specification: 3GPP TS 36.423
- X2AP functions are executed by so called Elementary Procedures
- Release 8 defines eleven EPs related to different X2AP functions
- In Release 9 six additional EPs have been added
- In Release 8/9 limited load management functionality is supported
 - eICIC is currently under specification for Release 10

Function	Elementary Procedure(s)	
Mobility Management	a) Handover Preparation	
	b) SN Status Transfer	
	c) UE Context Release	
	d) Handover Cancel	
Load Management	a) Load Indication	
	b) Resource Status Reporting Initiation	Release 8
	c) Resource Status Reporting	
Reporting of General Error Situations	Error Indication	
Resetting the X2	Reset	
Setting up the X2	X2 Setup	
eNB Configuration Update	a) eNB Configuration Update	\neg
	b) Cell Activation	
Mobility Parameters Management	Mobility Settings Change	
Mobility Robustness Optimisation	a) Radio Link Failure Indication	Release 9
	b) Handover Report	
Energy Saving	a) eNB Configuration Update	
	b) Cell Activation	

Coordinated Multipoint in 3GPP

- Network coordination became popular by publications of Bell Labs (Network MIMO)
 - M. Karakayali, G. Foschini and R. Valenzuela, "Network Coordination for spectrally efficient Communications in Cellular Systems", August 2006, IEEE Wireless Communications Magazine
- 3GPP considered coordination techniques under the name Coordinated Multipoint (CoMP) for Release 10
 - 3GPP TR 36.814, v9.0.0, March 2010
 - 3GPP Conclusion: CoMP will not be part of the Release 10 specification
- 3GPP Downlink CoMP terminology
 - Joint Processing Coordinated Multipoint: User data to be transmitted to one terminal is available in multiple sectors of the network. A subclass of joint processing is joint transmission, where the data channel to one terminal is simultaneously transmitted from multiple sectors.
 - Coordinated Scheduling/Beamforming: User data is only available in one sector, the socalled serving cell, but user scheduling and beamforming decisions are made with coordination among the sectors.

Example 1: Centralized Joint Transmission

- A central master cell manages all resources of the cooperating cells
- Each UE reports channel state information (CSI) to its serving cell
- The serving cell forwards the CSI to the master over the X2 interface
- The master distributes scheduling decisions to the transmitting cells over X2
- Advantage:
 - Allows optimal scheduling since the master knows the CSI of all UEs
 - Only two X2 usages are required
- Disadvantage
 - CSI needs to be sent over X2 for each <u>active</u> UE

Example 2: Decentralized Coordinated Scheduling

- Goal: Avoidance of interference in the spatial domain
- Idea: Identify worst interferer and avoid "collision"
 - Prevent interferers from using "most destructive" precoding matrices
 - Interfering cell can serve UEs on "non-destructive" beams
- Typical Coordination Approach
 - 1) Active UEs send information about "most destructive" interfering precoding matrices to their serving cells
 - RESTRICTION REQUEST message in slide 9
 - 2) The serving cell forwards the received messages to the interfering cells over X2
 - Option: The message is only forwarded if the requesting user is scheduled in order to reduce the number of X2 messages
 - Optional: Cells negotiate their beams to improve a utility metric
 - REQUEST GRANT/REJECT messages in slide 9

Example of a Coordination Time Line*)

*) Based on J. Giese, M. A. Awais, "Performance Upper Bounds for Coordinated Beam Selection in LTE-Advanced", in Proceedings of the ITG/IEE Workshop on Smart Antennas, Bremen (WSA'10), Germany, 23. – 24. February 2010

X2 Bandwidth Considerations

Centralized Joint Transmission CoMP

Estimate of Signaling Load per active User (Slave \rightarrow Master)			
Information Content	Required Bits		
Two Cell IDs (ECGI)	56 bits		
ACK/NACK report	$2 \ge 1$ bit (dual stream transmission)		
CQI/PMI/RI reports (assuming implicit periodic reporting as in LTE Rel8)	9 bits (subband CQI) ≤ 11 bits (wideband CQI) (per measured radio link)		
Σ	\leq 58 bits + 11 bits/measured radio link		

Decentralized Coordinated Scheduling/Beamforming

Estimate of Signaling Load for Restriction REQUEST		
Information Content	Required Bits	
Two Cell IDs (ECGI)	56 bits	
UE average throughput	16 bits	
SINR Increase by precoding matrix restriction (silencing)	16 bits	
Σ	≤ 86 bits	

 If coordination takes place each TTI = 1ms, one RESTRICTION REQUEST message requires a bandwidth of 86 kbits/s

Frequency of X2 Messages

- The figures show the number of sent and received X2 messages/cell for a coordinated scheduling approach*)
- With probability of 95%, less or equal than three messages are received per cell
- The number of received RESTRICTION REQUEST messages scales with the number of <u>scheduled</u> users in this example
- Receiving three messages/cell requires a bandwidth of 3 * 86 kbits/s = 258 kbits/s
- A three sector eNB would therefore require a X2 bandwidth of 3 * 258 kbits/s = 774 kbits/s
 - This assumes 10 UEs/cell and RESTRICTION REQUEST messages targeting 900 kHz and sent at for geometries < - 3dB

^{*)} Based on J. Giese, M. A. Awais, "Performance Upper Bounds for Coordinated Beam Selection in LTE-Advanced", in Proceedings of the ITG/IEE Workshop on Smart Antennas, Bremen (WSA'10), Germany, 23. – 24. February 2010

Impact of X2 Delay

- The figure shows the throughput loss for a centralized non-coherent JT CoMP approach*)
- The X2 delay increases the time till the CSI/CQI is available in the MAC scheduler
- Consequently, the CSI information alters and the data rates cannot be adapted well to the channel
- The figure shows the impact of the one-way X2 delay
 - V = 3 km/h
 - Release 8 CQI delay = 6ms
- The X2 delay comprises of
 - a) Interface propagation delay
 - b) eNB Tx/Rx processing delay

*) S. Brueck, L. Zhao, J. Giese, M. A. Awais, "Centralized Scheduling for Joint-Transmission Coordinated Multi-Point in LTE-Advanced", in Proceedings of the ITG/IEE Workshop on Smart Antennas, Bremen (WSA'10), Germany, 23. – 24. February 2010

Conclusions

- Downlink coordination techniques require extensions of the X2 application protocol (3GPP TS 36.423)
- In case of centralized coordination, the required X2 bandwidth scales with the number of users in RRC_CONNECTED mode
 - This number can be in the order of tens to hundreds
 - The required X2 bandwidth has a large variance
- Decentralized coordination techniques allow for a scaling with the number of scheduled users
 - This allows reducing the X2 bandwidth significantly
 - The drawback is a loss in performance compared to optimal schemes
- Coordination techniques are delay sensitive
 - X2 delay comprises of interface propagation delay and eNB processing delay
 - A X2 delay of 5ms caused a loss in spectral efficiency of 20% for the investigated scheme

Thank you!!

Contact: Dr. Stefan Brück Tel: 0911 54013270 sbrueck@qualcomm.com