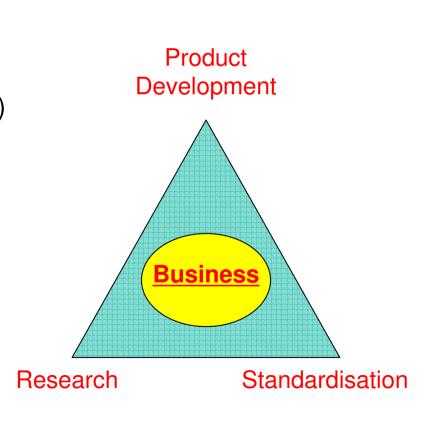


Empowered by Innovation

What services will use LTE-Advanced ? Taking a glimpse into 3GPP requirements


> Dr. Joerg Swetina NLE, Heidelberg

Preamble: (3GPP) standards - how do they fit together with research and industrial product development ?

Research

- Inspires products
- Is basis for standardisation
- Products
 - Require compatibility standards
 - Pay for research (and standards)
- Standards
 - Support markets for products
 - Create "economy of scale"

The industry tries to create ... the "magic" triangle ...

The 3GPP Standards environment: How does the 3rd Generation Partnership Project (3GPP) look like ?

The 3rd Generation Partnership Program (3GPP) is a collaboration among "Organizational Partners" (OPs) i.e. telecommunications related standards bodies (ETSI, ATIS, CCSA, ARIB, TTC, TTA), that in turn have "individual members" (operators, manufacturers..) 3GPP TSG SA WG1 *specifies service requirements for 3GPP*

NEC Confidential

Recent developments that will profit from LTE-(advanced)

IMS based Peer-to-Peer Content Distribution Services

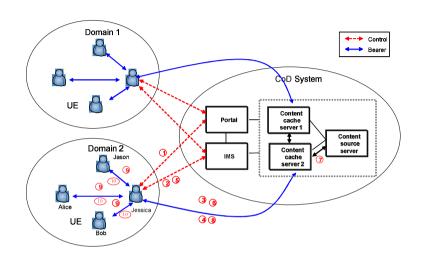
- Study started in 2009, now expecting normative work
- Main proponents: China Mobile, Huawei, ZTE, Motorola
- Home NodeB/eNodeB and Local IP Access / Selective IP Traffic Offload (aka 3GPP Femto-cells)
 - Work started already in 2008 (comprising UTRAN and LTE)
- Most of the major 3GPP operators and manufacturers supported it Network Improvements for Machine-Type Communications
- (aka Machine-to-Machine)
 - Based on an early study 3GPP started normative work in 2008
 - Main supporters: KPN, China Mobile, Telecom Italia, Airbiquity, InterDigital ... and an extension of the work in 2009 included all major players as supporters.

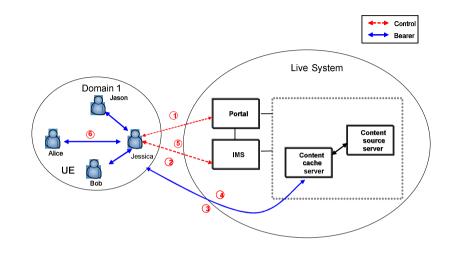
... All specifications can be found here:

http://www.3gpp.org/ftp/Specs/html-info/22-series.htm

Problem statement:

- explosive growth of media content consumption
- number of media servers to provide streaming services is required to be increased almost linearly with the number of users
- centralized streaming media servers require considerable demands towards the bandwidth of the backbone IP network.


→ need to deploy more and more edge servers close to UEs to guarantee service quality with the increasing number of users.

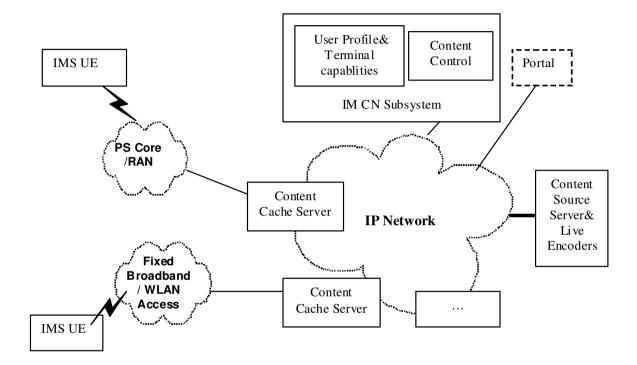

Proposed solution:

- Use Peer-to-peer technology between edge servers and UEs
- edge servers handle the requests from locally served UEs, but also can handle requests transferred from the neighbouring edge servers.
- Similarly, if the UE's capabilities permit, the UE can offer spare uplink bandwidth and storage space to upload data to other requested destinations
- Use IMS for user authentication, registration, service discovery, and multimedia session control etc.

IMS based Peer-to-Peer Content Distribution Services (II) - use cases

Use-case: Content-on-Demand Service for Large numbers of Online Users

- Jessica (domain 2) receives a popular film fom content cache 2
- Others in her domain also request the film; parts are available on cache 1
- Traffic from both caches gets congested. Jessica's UE now acts as a cache for close-by UEs


Similar use-case: Software distribution to a large number of UEs

Use-case: Live Streaming Service for Large numbers of Online Users

- Jessica is watching a live football game, streamed as IP muticast via content cache
- Others also want to see the game but cannot, because e.g. capacity bottleneck or the access router doesn't support IP multicast
- Jessica's UE relays the video for others with very short delay (quasi live)

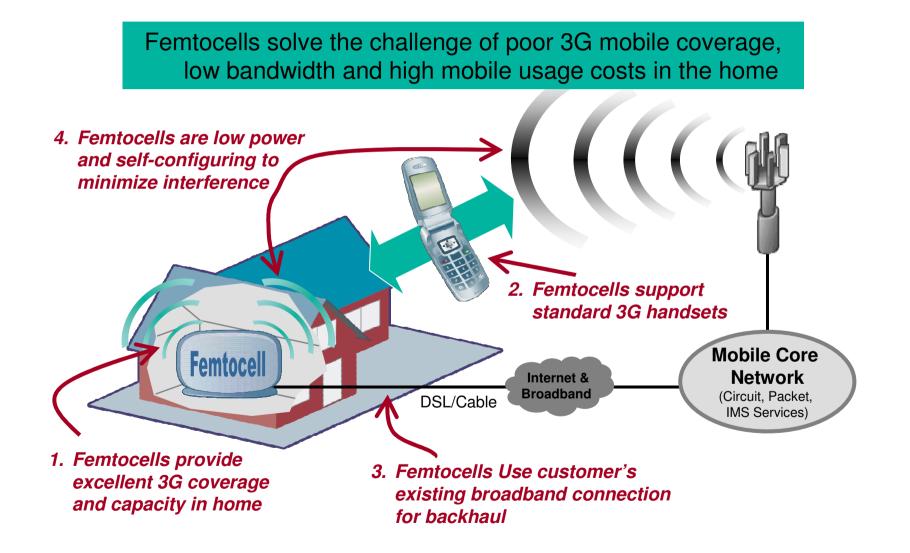
IMS based Peer-to-Peer Content Distribution Services (III) - schematic system view

IMS can select qualified User Peers

- Preferred: UEs attached to access networks which can provide upload/download bandwidth higher than a predefined limit by the operator.
- UEs which maintain stable network connections (e.g. fixed network).
- IMS can provide the UE with the appropriate server to obtain the addresses of Peers
- → Also combination with Femto-cells highly relevant !

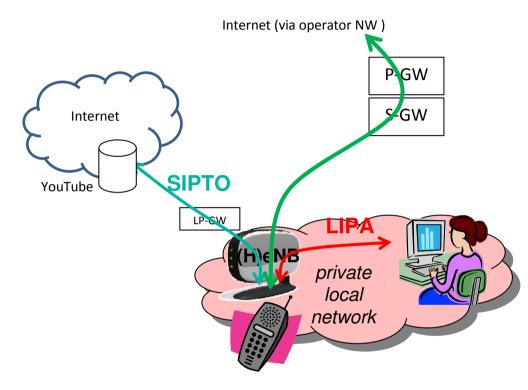
Home NodeB/eNodeB (Femo-cells) and Local IP Access / Selective IP Traffic Offload (I)

Problem statement:


- In many parts of the world coverage (UTRAN, LTE) is still an issue.
- Indoor coverage gets worse the higher transmission frequencies.
- Big cells with many users decrease individual bitrate per user. Difficult to compete with achievable bitrates in the fixed net (xDSL, FTTH..)
- Setting up and maintaining (macro-) base stations is costly
- High data troughput (e.g. generated by iPhone) eats up operator resources

Proposed solution:

- Use Femto-cells with very small cell sizes that are shared by only a few users.
- Usage of Femto cells may further be restricted (e.g. to family members) by establishing Closed Subscriber Groups.
- In addition to routing IP traffic through the operator's network:
 - Local IP traffic (e.g. to the user's home LAN) may break out locally into the user's private LAN (Local IP Access - LIPA)
 - Selective IP traffic to the Internet (e.g. Video streaming from local servers) may break out at the Femto-cell or at an entity close to it – without traversing the operator's network. (Selective IP Traffic Offload – SIPTO)



Home NodeB/eNodeB (Femo-cells) and Local IP Access / Selective IP Traffic Offload (II)

Home NodeB/eNodeB (Femo-cells) and Local IP Access / Selective IP Traffic Offload (III)

Local IP Access (LIPA)

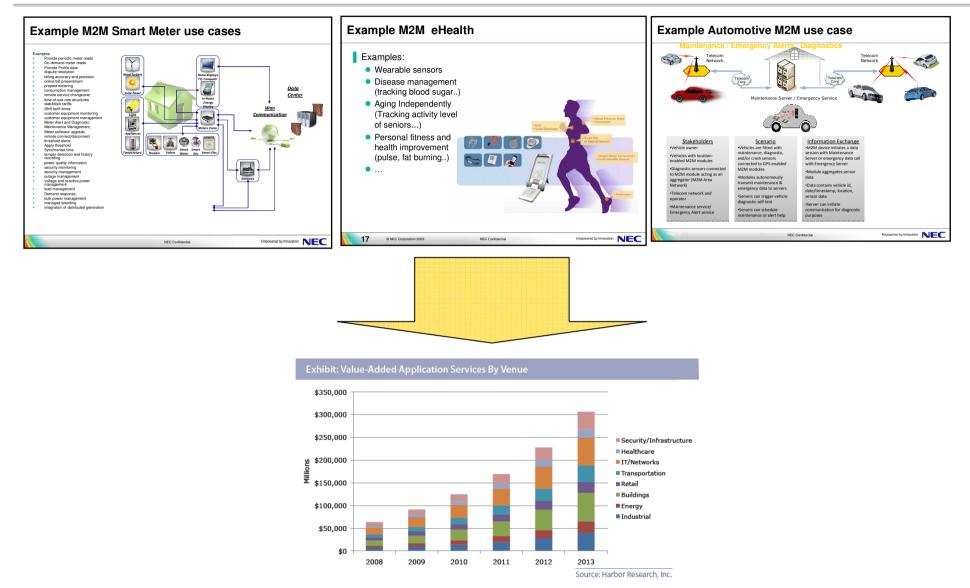
- Allows very high data rates to user due to only few users per cell
- Allows mobility of data sessions e.g. within an enterprise (multiple femto cells connected to the Intranet)

Selective IP Traffic Offload (SIPTO)

- Offloads high volume IP traffic from operator's core network
- Can also be used in the macro network (i.e. from eNBs)

Network Improvements for Machine-Type Communications(I)

Problem statement:


- A big market for Machine-to-Machine communication is expected soon.
 - EU issued a mandate on Smart Metering (M441) to European SDOs, ITU-T has created a focus group on Smart Grid (energy)...
 - Currently mainly "vertical" markets for M2M exist (services/devices only usable for one dedicated purpose). "Horizontal" markets could boost business.
 - Costs per service and/or device need to be dramatically lower than today
- Current (3GPP) networks are designed for human-to-human communication (telephony) or server-to-human (video streaming). They need optimization for M2M purposes.

Proposed solution:

- Implement optimisations in 3GPP that allow:
 - Reduced mobility (a vending machine usually doesn't move)
 - A huge number of mobile devices to attach to the network (orders of magnitude)
 - maintain connectivity to a large number of devices (including low-volume traffic)
 - A device to go into "deep sleep" state (e.g. for energy saving) and "wake-up" again
 - Charging mechanisms for groups of devices ...
- → Also note, that ETSI has started a TC on M2M in 2009!

Network Improvements for Machine-Type Communications(II) - scenarios

NEC Confidential

Network Improvements for Machine-Type Communications(III)

M2M is probably not the "killer-application" for LTE / LTEadvanced, but:

- Will create applications for high-data usage (video monitoring, surveillance ..)
- Will create applications for low-data usage (metering...) that may run over existing old technology – e.g. Use SMS for transmission.
- ... Will for sure create areas for new business that we currently are not thinking about....

Conclusion

We can anticipate that in some service areas (e.g. P2P) high volume data over the air will require LTE / LTE-advanced

In other areas (Femto-cells) high mobile data usage will be encouraged through introduction of these technologies.

Machine-to-Machine communication will open up an opportunity for a completely new usage of mobile networks. We cannot yet foresee what the impacts on mobile data usage will be.

Thank you !

Empowered by Innovation

