Performance of Relays in LTE-Advanced Networks

Ömer Bulakci, Abdallah Bou Saleh

PhD candidates of Helsinki University of Technology (TKK) @ Nokia Siemens Networks

18.02.2010

Content

- Introduction
- Goal
- System Parameters
- Uplink performance evaluation
 Power control
- Downlink performance evaluation
 - -RN coverage area extension
- Conclusions

Introduction (1/2)

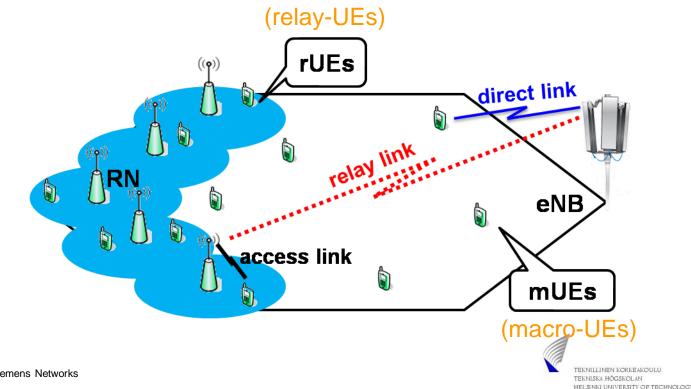
Requirements for LTE-Advanced:

- 1 Gbps on the downlink and 500 Mbps on the uplink.
- Higher peak and average spectral efficiency.
- More homogenous distribution of the user experience over the coverage area.

Challenges:

- Severe propagation losses at the cell edge, resulting in significant capacity and coverage problems.
- <u>Straight-forward Solution</u>: Smaller sectors or equivalently more eNBs.
 - Cost inefficient

Can we do better?



Introduction (2/2)

Yes, WE CAN!

- <u>Promising Solution</u>: Heterogeneous deployments Decode and Forward Relay Nodes
 - Low total cost of operation.
 - More homogeneous user experience.
 - Cell coverage area extension.

Goal

- Investigate the performance of LTE-Advanced uplink in relay deployment
 - Apply standardized LTE Rel.8 power control on UE-eNB and UE-RN links.
 - Optimize power control parameters at eNBs and RNs.

- Investigate the performance of LTE-Advanced downlink in relay deployment
 - Study the impact of RN coverage extension via biasing in cell selection on the system performance.

System Parameters

			-		
	System Layout	19 tri-sectored sites	ific	Antenna configuration	1 Tx, 2 Rx
	Bandwidth	10 MHz	pecific	Noise Figure	9 dB
S	Traffic Model	Full Buffer	JE S	UE drop	Uniform - 10 UEs
arameters	Noise PSD	-174 dBm/Hz	n		per sector – Indoor
Iran	Shadowing	σ _{macro} = 8dB		• eNB	• • • • • •
٩		σ _{rn cell} = 10dB		RN	RN
Svstem	Penetration Loss	20 dB	$ $ \downarrow		
Svs					
	Highest MCS (AMC)	64-QAM – R: 9/10			
	Resource partitioning	Reuse 1		•]••[•	
	Scheduler	Round Robin			
Г	Antenna height	5 m (below rooftop)		Antenna height	25 m (above rooftop)
	Antenna	2 Tx, 2 Rx		Antenna configuration	2 Tx, 2 Rx
	configuration	Omni-directional			
cific	Transmit Power	30 dBm	Decific	Transmit Power	46 dBm

	-	(1/
RN Specific	Antenna	2 Tx, 2 Rx
	configuration	Omni-directional
	Transmit Power	30 dBm
	RN-UE antenna gain	5 dBi
	RN-eNB antenna gain	7dBi
	Noise Figure	7 dB
	Backhaul Link	ldeal

c	Antenna height	25 m (above rooftop)	
	Antenna configuration	2 Tx, 2 Rx	
Specific	Transmit Power	46 dBm	
-	Antenna gain	14 dBi	
eNB	Noise Figure	5 dB	
	eNB Antenna Pattern	-min[12 (θ/θ _{3dB})², A _m]	
	(Horizontal)	$\theta_{3dB} = 70^{\circ} \& A_m = 25 \ dB$	

TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY Nokia Siemens Networks

Uplink Performance Evaluation

~ Power Control ~

Nokia Siemens Networks

Basics

I. LTE Rel.8 fractional power control (1/2)

• The Open Loop Power Control formula is investigated.

$$P = \min\{P_{\max}, P_0 + 10 \cdot \log_{10} M + \alpha \cdot L\}$$

- P_{max}: Max allowed UE transmit power [23 dBm]
- P_0 : Parameter to control SNR target [dBm]
- \succ M : # of PRBs allocated to one UE
- $\succ \alpha$: Cell specific path loss compensation factor
- \succ *L* : Downlink path loss estimated at UE [dB]
- P_0 can be selected from the set of [-116:1 dB: P_{max}] in dBm.
- We investigated P_0 in the range of [-113:2 dB:-7] in dBm.

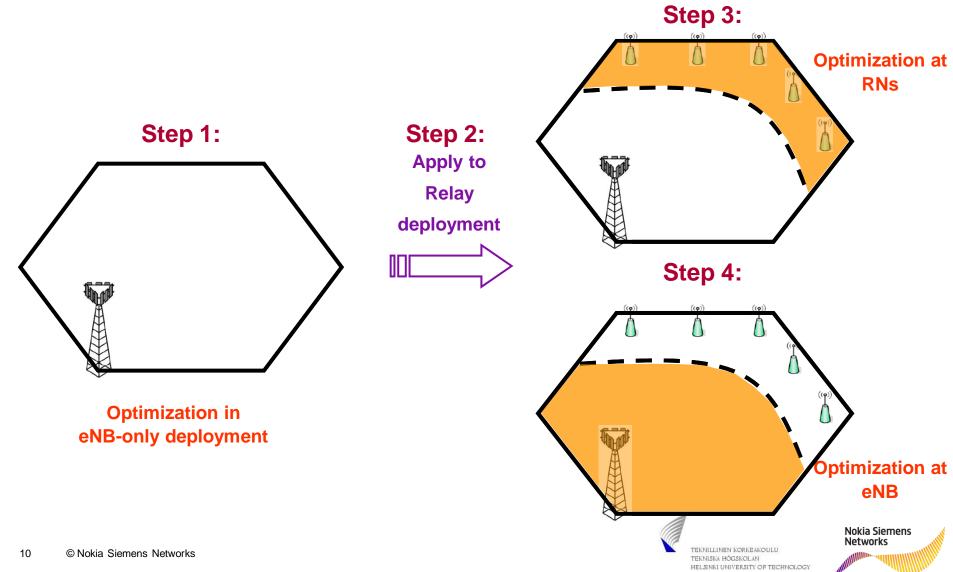
Basics I. LTE Rel.8 fractional power control (2/2)

 $\alpha \in [0.0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]$ $\succ \alpha = 1.0 \implies$ Full Compensation Power Control (FCPC)

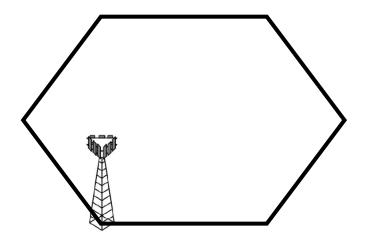
 $\geq \alpha \in [0.4, 0.6, 0.8] \implies$ Fractional Power Control (FPC)

No Power Control (No PC): Fixed Tx Power

FCPC compensates the path loss fully and hence increases the performance of cell edge users.

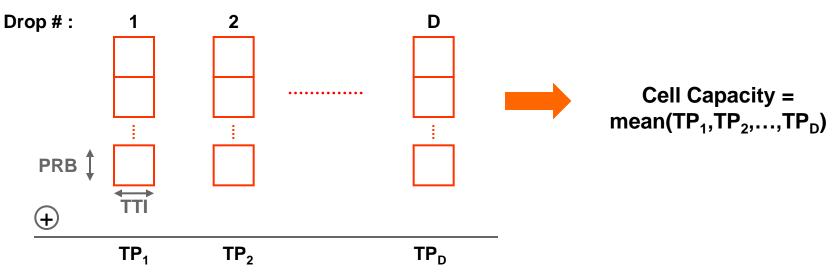

FPC utilizes a partial compensation factor for the path loss and improves the performance of cell center users by inducing an acceptable inter-cell interference.

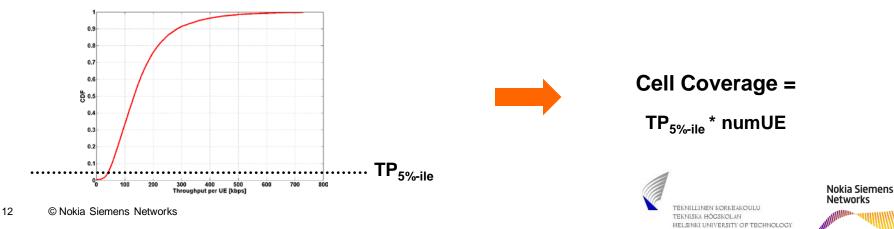
Basics


II. Methodology

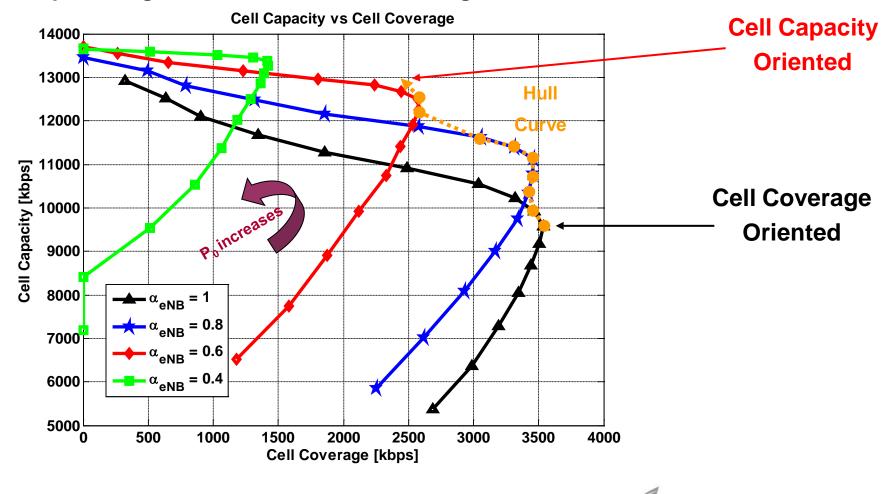
• Power control parameter optimization in relay deployment is done in four steps.

Optimization in eNB-only deployment


TEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY


Performance Metrics

• Cell Capacity: Aggregate user throughput (TP) per TTI averaged over user drops.

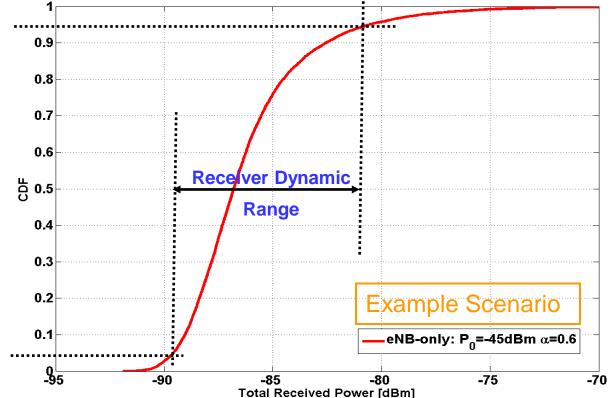


 Cell Coverage: 5th %-ile user throughput multiplied by the number of users per sector.

Parameter Optimization in eNB-only Deployment Cell Capacity vs. Cell Coverage

• Hull Curve: At the final point, the percentage-wise increase in cell capacity is higher than percentage-wise decrease in cell coverage.

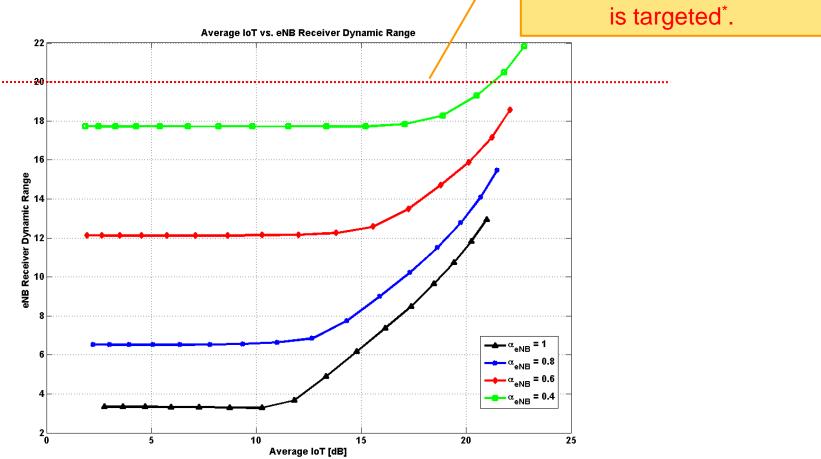
Nokia Siemens Networks


TEKNILLINEN KORKEAKOULL

HELSINKI UNIVERSITY OF TECHNOLOGY

TEKNISKA HÓGSKOLAN

Performance Metrics


• Receiver Dynamic Range: The difference between the 5th%-ile and 95th%-ile of the CDF of the *total received power per PRB* (Wanted Signal Power + Interference Power).

• Average Interference over Thermal Nose (avgIoT): Defines the operating point of the system.

Parameter Optimization in eNB-only Deployment Receiver Dynamic Range The upper limit of 20 dB

* B.E Priyanto et. al., "In-Band Interference Effects on UTRA LTE Uplink Resource Block Allocation," VTC Spring 2008, IEEE , no., pp.1846-1850, 11-14 May 2008

Networks

TEKNILLINEN KORKEAKOULU

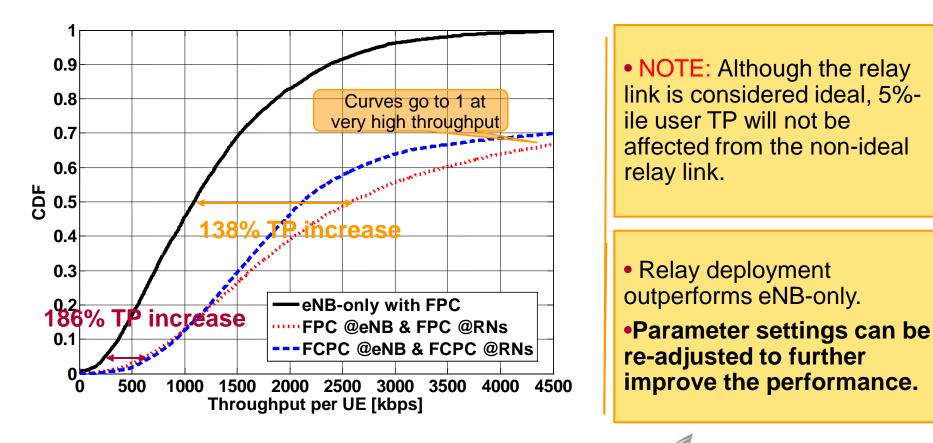
TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY

Parameter Optimization in eNB-only Deployment Selected Parameter Settings

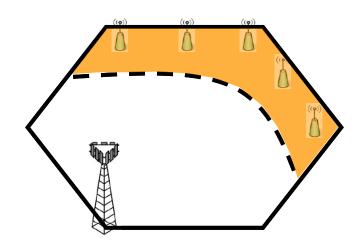
	Cell coverage oriented	Cell capacity oriented
Alpha	1.0	0.6
P ₀	-101 dBm	-55 dBm
Average IoT	10.0 dB	13.5 dB
Cell capacity	9576 kbps	12670 kbps
Cell coverage	3536 kbps	2444 kbps

32% Capacity Increase

31% Coverage Loss


Step 2: Apply to Relay deployment

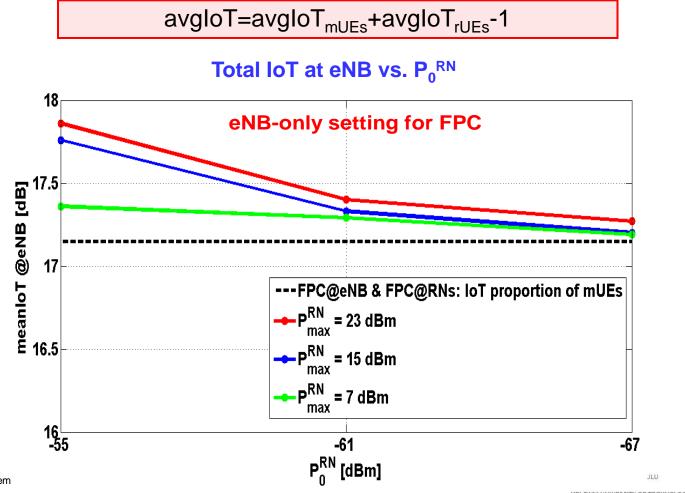
Parameter Optimization in Relay Deployment Applying eNB-only Parameter Settings


Throughput Distribution at Sector

> The optimal parameter settings obtained in eNB-only deployment are assumed also for relay deployment.

Step 3:

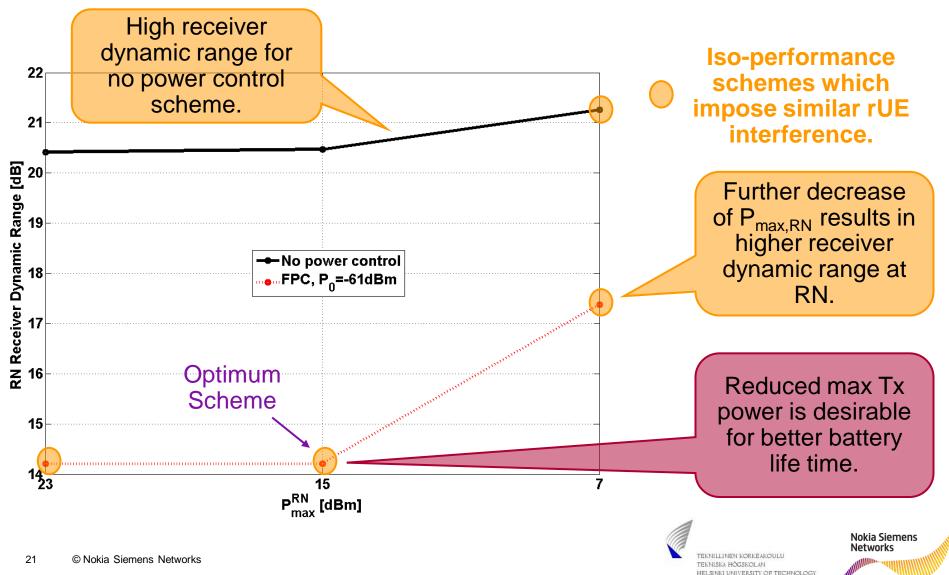
Optimization at RNs



19 © Nokia Siemens Networks

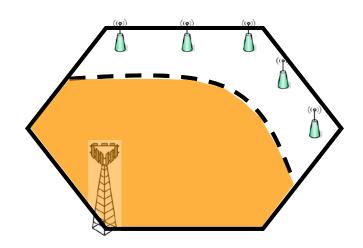
Parameter Optimization in Relay Deployment Optimization at RNs (for FPC): Interference Mitigation

• The effect of reducing power levels on the interference proportions.


> By means of decreasing P_{max} and P_0 @ RNs, the interference caused by relay users can be decreased significantly.

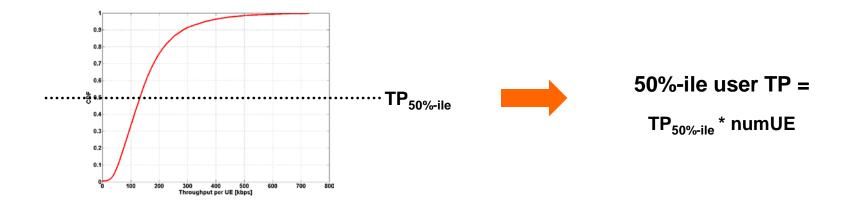
Parameter Optimization in Relay Deployment

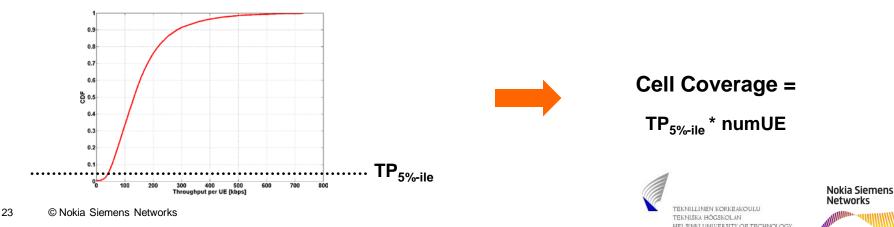
Optimization at RNs (for FPC) : Receiver Dynamic Range


Receiver Dynamic Range of RN

Optimization at eNB

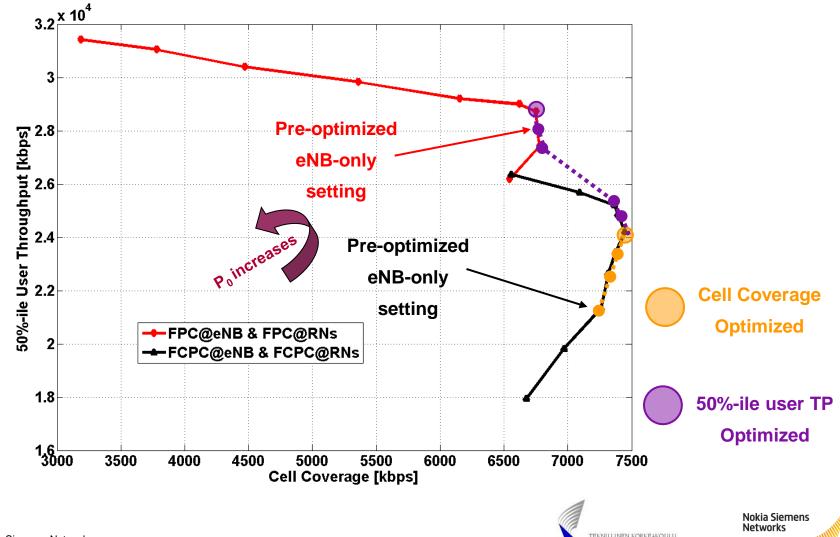
TEKNILLINEN KORKEAKOULU


TEKNISKA HÓGSKOLAN


22 © Nokia Siemens Networks

Performance Metrics

• 50%-ile User Throughput: 50th %-ile user throughput multiplied by the number of users per sector.


• Cell Coverage: 5th %-ile user throughput multiplied by the number of users per sector.

Parameter Optimization in Relay Deployment Further Optimization: Tuning Parameters at eNB

• Performance Metrics: 50%-ile User Throughput vs. Cell Coverage

TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY

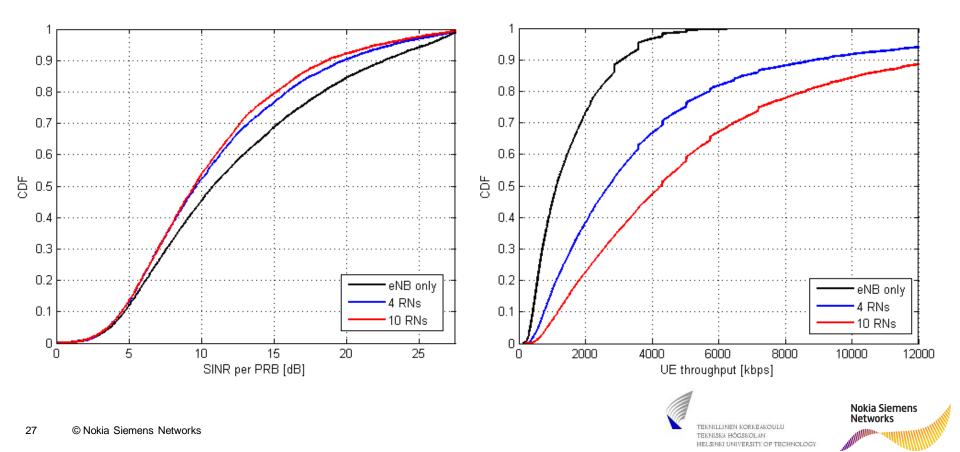
Parameter Optimization in Relay Deployment Further Optimization: Tuning Parameters at eNB

Parameters	50%-ile user TP Oriented		Cell Coverage Oriented		
	eNBs	RNs	eNBs	RNs	
P ₀ [dBm]	-53	-61	-95	-101	
alpha	0.6	0.6	1.0	1.0	
P _{max} [dBm]	23	15	23	15	
				•	

TP gain w.r.t. eNB-only		
@ 50%-ile	164%	122%
@ 5%-ile	178%	204%

Downlink Performance Evaluation

~ RN Coverage Extension ~

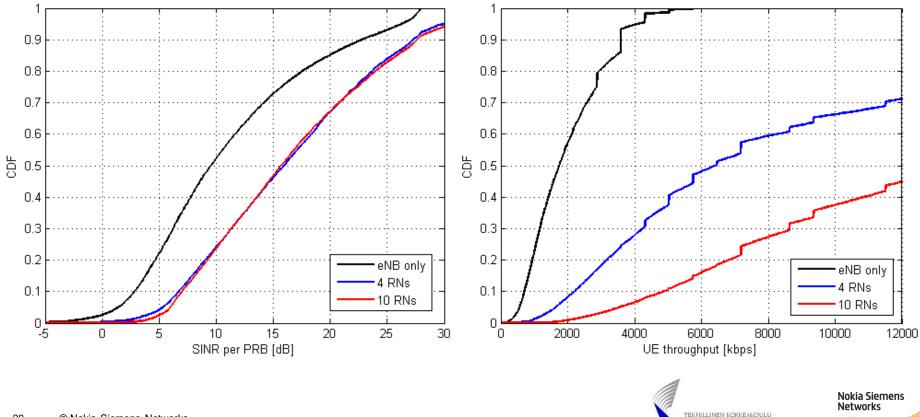


Nokia Siemens Networks

Simulation Results RN deployment - ISD 500m

Significant gains from RN deployments

	4 RN	10 RNs	
Throughput Gain [%]	5%-ile	65	145
(Reference: eNB-only)	50%-ile	139	275



Simulation Results RN deployment - ISD 1732m

Huge gains from RN deployment in Suburban environments

	4 RN	10 RNs	
Throughput Gain [%]	5%-ile	194	541
(Reference: eNB-only)	50%-ile	267	612

TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY

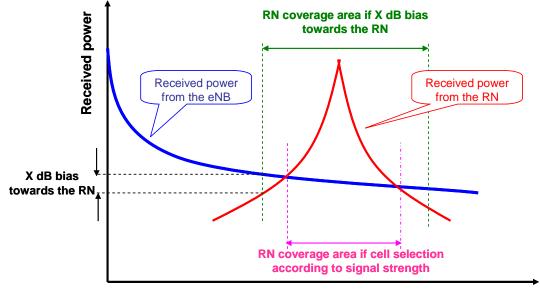
Further Improvement in the Downlink

Motive

Relays are small nodes with low transmission power, and hence, small coverage areas.

Motive

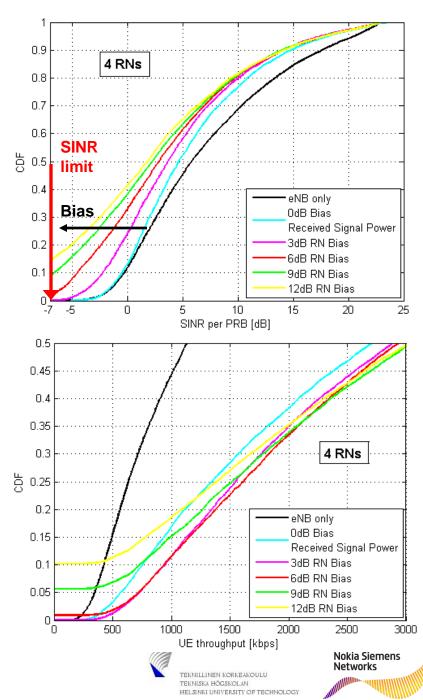
- Inefficient use of resources in the under-loaded RN cell
- High competition on resources in the macro cell


Cost-free Solution

Increase RN coverage area through biasing in cell selection and handover thresholds.

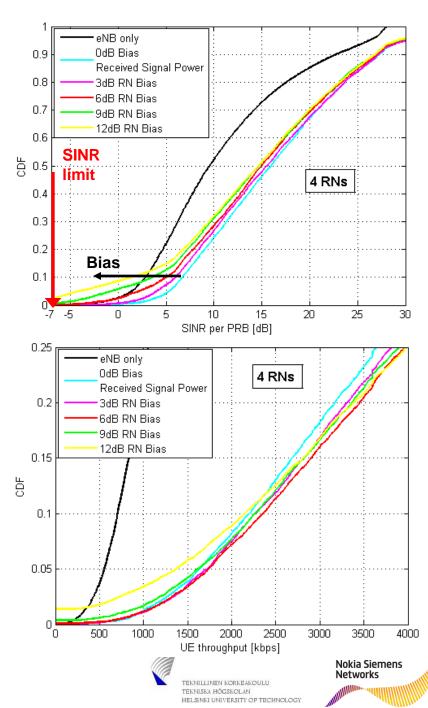
Balancing cell loads

- <u>Default</u>: Cell is selected according to received signal strength.
- Adding a bias in cell selection and handover thresholds increases the RN cell area, and hence its load.
- UEs, which moved to the RN cell, will face less competition on resources.


Distance from eNB

Simulation Results Biasing - ISD 500m

Significant gain from 3dB biasing in cell selection


RN bias			6dB
5%-ile Throughput Gain [%]	4 RNs	29	27
Reference: No bias in cell selection	10 RNs	36	26
50%-ile Throughput Gain [%]	4 RNs	6.5	8.5
Reference: No bias in cell selection	10 RNs	3	6.5

Simulation Results Biasing - ISD 1732m

Moderate gain from 6dB biasing in cell selection

RN bias			6dB
5%-ile Throughput Gain [%]	4 RNs	5.5	6.5
Reference: No bias in cell selection	10 RNs	8	8.5
50%-ile Throughput Gain [%]	4 RNs	1.1	1.1
Reference: No bias in cell selection	10 RNs	2.5	2.7

Conclusions

- Relay deployments enhance system performance.
- Power control parameter optimization offers significant improvement in the uplink.
 - Power control in relay deployment is a good means to mitigate interference, and to abide by the dynamic range limitations.
- RN coverage area extension offers further improvement in the downlink.
 - RN cell extension via biasing in cell selection offers significant gains in ISD 500m scenarios.
 - Biasing cell selection in ISD 1732m scenarios results in moderate gains.

Parameter Optimization in Relay Deployment BACK-UP **Interference Proportions** Interference caused by Cell Center UEs and Cell Edge UEs can be analyzed separately. $\tilde{IoT}_{linear} = \frac{\tilde{I} + N}{N} = \frac{\tilde{I}_{mUEs} + \tilde{I}_{rUEs} + N}{N}$ \tilde{I}_{mUEs} and \tilde{I}_{rUEs} are two independent random variables. $=\frac{\widetilde{I}_{mUEs}+\widetilde{I}_{rUEs}+N+N-N}{N}$ $=\frac{\widetilde{I}_{mUEs}+N}{N}+\frac{\widetilde{I}_{rUEs}+N}{N}-1$

$$\Rightarrow E\left\{\tilde{IoT}\right\} = E\left\{\tilde{IoT}_{mUEs}\right\} + E\left\{\tilde{IoT}_{rUEs}\right\} - 1$$

TEKNILLINEN KORKEAKOULU TEKNISKA BÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY

