Investigations into Relay Deployments within the LTE-Advanced Framework

Abdallah Bou Saleh, Ömer Bulakci

PhD candidates of Helsinki University of Technology (TKK) @ Nokia Siemens Networks

18.02.2010

Nokia Siemens Networks Content

- Introduction
- Goal
- System Parameters
- Considerations on Relay Deployment
 - Different Relay Realizations
 - Relay Site Planning

Conclusions

Introduction

Requirements for LTE-Advanced:

- 1 Gbps on the downlink and 500 Mbps on the uplink.
- Higher peak and average spectral efficiency.
- More homogenous distribution of the user experience over the coverage area.

Relay Nodes

- Capacity enhancement.
- More homogeneous user experience.
- Cell coverage area extension.
- Low total cost of operation

HELSINKLUNIVERSITY OF TECHNOLOGY

Goal

WHAT to deploy?

-Study the performance of AF and DF relay nodes

Limitations due to loop interference (LI) in full-duplex AF relay node deployments

Advantages of concurrent transmissions on the access link in half-duplex DF relay node deployments

WHERE & HOW to deploy?

-Optimize deployment via relay site planning

Considerations on deployment regions: Cell edge, Intermediate region, Cell center

Considerations on deployment strategies: Cell selection, Location selection

System Parameters

System Parameters	System Layout	19 tri-sectored sites			Antenna height	2	25 m (above rooftop)	
	Carrier Frequency	2 GHz			Antenna configuration	2	 2 Tx, 2 Rx	
	Bandwidth	10 MHz		cific	Transmit Power	4	6 dBm	
	Traffic Model	Full Buffer		B Spe	Antenna gain	1	4 dBi	
	Noise PSD	-174 dBm/Hz		eN	Noise Figure	5	dB	
	Penetration Loss	20 dB (direct & access links)			eNB Antenna Pattern (Horizontal)	A Ø	$A_{H}(\theta) = -\min[12 \ (\theta/\theta_{3d})]$ $A_{3dB} = 70^{\circ} \text{ and } A_{m} = 25$	_{IB})², A _m] 5 dB
RN Specific	Antonno kojakt		- F		eNB Antenna	A	$A_{V}(\theta) = -\min[12 \ (\theta - \theta_{tilt})/\theta_{3dB})^{2},$	
	Antenna neight	5 m (below roottop)			Pattern	S	SLA]	
	Antenna	2 Tx, 2 Rx			(Vertical)	θ	$\theta_{3dB} = 70^{\circ} \text{ and } SLA = 20 \text{ dB}$	
	configuration	Omni directional	۱L			θ	$_{tilt} = 15^{\circ}$	
	Transmit Power	Ismit Power30 dBmJE antenna5 dBi	r		_			
			fic	Antenna		1 Tx, 2 Rx		
	RN-UE antenna			eci	configuration			
	gain		Sp	Sp	Noise Figure		9 dB	
	RN-eNB antenna gain	7dBi		В	UE drop		Indoor	
	© Nokia Siemens Networks	7 dB					Noki Netv reknillinen korkeakoulu	a Siemens vorks

HELSINKI UNIVERSITY OF TECHNOLOGY

Different Relay Realizations

Nokia Siemens Networks

Theoretic Framework Amplify-and-Forward Relaying

Full-duplex AF Relaying

- Loop interference: leakage of transmit signal to receive antenna
 - SNR_{LI}: Loop interference signal to noise ratio
- Isolation from loop interference
 - Antenna isolation (outdoor-to-indoor arrangement, directive antennas)
- End-to-end SINR
 - Useful Signals on the direct link and access link
 - Relayed noise, loop interference and UE receiver noise

 $SINR_{AF} = \frac{SNR_{eNB-RN} \cdot SNR_{RN-UE} + SNR_{eNB-UE} \left(1 + SNR_{LI} + SNR_{eNB-RN}\right)}{SNR_{eNB-RN} + \left(1 + SNR_{RN-UE}\right) \left(1 + SNR_{LI}\right)}$

Nokia Siemens Networks

Theoretic Framework Decode-and-Forward Relaying

Half-duplex DF Relaying

Possibility of concurrent transmissions on the access link

Assuming optimum resource partitioning

Assumptions

- Single user is distributed in the network with equal probability over cell area.
- Interference is neglected.
- Shadowing and fast fading are not explicitly considered (30dB margin).
- Cell edge UE spectral efficiency on the direct link is assumed to be 0.7b/s/Hz.
- Average spectral efficiency for cell middle UEs is assumed to be 2.4b/s/Hz.
- The SINR of eNB-RN link is assumed to be G times that of the eNB-UE link.

 $SINR_{eNB-RN} = G \cdot SINR_{eNB-UE}$

RN deployment, whether on cell edge or cell middle, is defined by the spectral efficiency on the direct link, which in turn defines SINR_{eNB-UE}.

Impact of Loop Interference (LI) for AF relays

Comparison AF RN vs. Single TX DF RN

AF RN outperforms SINGLE TX DF RN

AF RN outperforms eNBonly both in the middle of the cell and on cell edge.

DF RN outperforms eNBonly for cell-edge deployments only.

Concurrent TX DF RN

Significant gain from concurrent transmissions on the access link

Interference is neglected

Number n of concurrent transmissions needed for DF RN to outperform AF RN.

SNR on access link [dB] Backhaul link gain [dB] Varying the direct link SE (relay deployment at different distances from the eNB)

Overall, a small number of concurrent DF transmissions is required to outperform AF RN deployments.

Relay Site Planning

The Basic Principle

TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY

Approaches

A: Cell Selection

(A1,B1): <u>Reference</u>One possible locationRelay connects to the closest eNB

(A2,B1): -One possible location -Relay connects to <u>the best</u>eNB

B: Location Selection

(A1,B2): -*M* possible locations -Relay connects to the closest eNB

(A2,B2): -*M* possible locations -Relay connects to <u>the best</u> eNB

Selection Criteria

SNR and SINR based criteria

$$SINR_{m,k} = \frac{P_k/L_{m,k}}{P_N + \sum_{k' \neq k} P_{k'}/L_{m,k'}} = \frac{SNR_{m,k}}{1 + \sum_{k' \neq k} SNR_{m,k'}}$$

- P: Signal Power
- P_N : Noise Power
- L: Path-loss including shadowing
- *m*: *m*th relay candidate location from the set of [1,*M*]
- *k*: *k*th eNB

max { SNR or SINR }

(A1,B1): *m*=1 & *k*=1 "Reference"

(A2,B1): *m*=1 & maximize over *k*(A1,B2): maximize over *m* & *k*=1
(A2,B2): maximize over *m* & *k*

Assumptions

- Both 3GPP Case 1 (ISD 500 m) and 3GPP Case 3 (ISD 1732 m) are analyzed.
- Relays are deployed outside, hence no penetration loss.
- Shadowing correlation between candidate relay locations decreases with an exponential rate. Normalized auto correlation function is given as:

 $|\Delta x|$: distance between candidate locations

 d_{cor} : de-correlation distance (50 m)

• Three relay deployment areas are considered:

Nokia Siemens Networks

TEKNISKA HÖGSKOLAN HELSINKLUNIVERSITY OF TECHNOLOGI

17 © Nokia Siemens Networks

Metric: SINR Gain relative to reference (A1,B1)

Nokia Siemens Networks

TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY

• Case 1 (ISD 500 m)

(A2,B1): Cell Selection & No Location Selection (A1,B2): No Cell Selection & Location Selection

(A2,B2): Cell Selection & Location Selection

- (A2,B2) performs best.
- The highest gain is achieved in case of cell edge deployment.
- SINR based criterion yields higher gains than the SNR based criterion.

• Case 3 (ISD 1732 m)

(A2,B1): Cell Selection & No Location Selection

(A1,B2): No Cell Selection & Location Selection

(A2,B2): Cell Selection & Location Selection

- (A2,B2) performs best.
- The highest gain is achieved in case of cell edge deployment.
- SINR based criterion yields better gains than the SNR based criterion.
- The performance difference of SNR & SINR based criteria is smaller compared to Case 1 due to lower interference.

20 © Nokia Siemens Networks

Decrease in shadowing standard deviation

Conclusions

- Decode-and-forward RNs outperform Amplify-and-Forward RNs
 - High loop interference could considerably decrease the performance of AF relaying.
 - AF RN outperforms Single Tx DF RN
 - AF RN deployments outperforms eNB-only both at cell middle and edge, whereas Single Tx DF RNs perform better only for cell edge deployments.
 - A small number of concurrent DF transmissions is required to outperform AF RN deployments.
- Significant SINR gains on the relay link can be achieved via relay site planning.
 - Relay Nodes will be deployed reasonably by operators. Hence, favorable relay locations will be selected rather than random deployments.
 - The standard deviation of the shadowing after the relay site planning can be reduced effectively which also boosts the SINR performance at low percentiles.

