micro and nanoelectronics microsystem ambient intelligence image chain

VDE/ITG Section
5.2.4 "Mobility in IPbased Networks"

February 18, 2010 Darmstadt

Multi-Cell Interference Aware Resource Allocation for Half-Duplex Relay Based Cooperation

WORKSHOP

"Interference Management and Cooperation Strategies in Communication Networks"

CÉdric ABGRALL, Emilio CALVANESE STRINATI CEA, LETI, MINATEC, Grenoble, France

Overview of the presentation

- 1. Context, Problems & Motivations
- 2. State of the Art
- 3. Model & Assumptions
- 4. Novel Approach
- 5. Simulation Results
- 6. Conclusions

1. Context, Problems & Motivations

Context

- Wireless OFDMA cooperative networks
- Downlink transmissions
- Backhaul between base stations (BS)

Motivations

- WiMAX, LTE-Advanced target higher rates, wider cell coverage
- Standards coexistence, increasing number of active terminal devices
- Demanding services, mobility of devices

Problems

- Scarce resources, regulated access to bandwidth
 - → Frequency Sharing causes intra- and inter-cell interference
- **Interference increases** with the reuse ratio of resources

Interference drawbacks:

- Link quality can drastically drop down for long periods
- Reduction of overall system capacity and decoding reliability
- Especially prejudicial for border cell users

2. SOTA – Orthogonalization (1)

Frequency Sharing & Time Sharing

- Resource orthogonalized in time and/or in frequency domains
- No interference because resources aren't locally shared

Frequency Hopping, Frequency Sharing

- Share of resource according to a resource reuse factor
- Some interference is generated but kept under control

Drawbacks / Limitations

- Unusable with huge number of users (very bad spectral efficiency)
- must not be too large

[Xiang07] Soft Frequency Reuse

2. SOTA – Deal with Interference (2)

Interference Cancellation / Avoidance [Tse05], [Jafar08], [Perlaza08]

- Advanced signal processing techniques (SIC, DPC, Interference Alignment, Zero Forcing)
- Filter out interference at Transmitter and/or Receiver

Drawbacks / Limitations: CSIR/CSIT, complex processing, hardly implementable in practice

Noisy Interference

Interference treated as additional noise

Drawbacks / Limitations: weak or limited perceived INR

Channel Aware Mechanisms [Boyd04], [Cover06], [Gesbert07]

- Adaptive MCS, Power Control (Water Filling)
- Graph Coloring, (Convex) Optimization

Drawbacks / Limitations: CSIR/CSIT, complex processing

2. SOTA – Cooperation (3)

Cooperative Transmissions [Calvanese07], [Mohajer08]

- 1. Broadcasting: s; broadcasts the packet; r; and d; listen
- 2. Relaying: r_i transmits a modified (*) version through d_i (*) Amplify & Forward / Decode & Forward

Classical Strategy (1 band)

2n timeslots

- + Spatial diversity, redundancy+ Coverage extension+ Decoding reliability at destination
- AF protocol: noise and interference amplification
 DF protocol: codebooks, error propagation **if** erroneous decoding

Cell viewpoint: Careful planning of cooperation

System viewpoint: Cooperative techniques add 'network agents'

→ Cooperative 'Interference-Benefits' Trade-off

3. Model & Assumptions

System Model

- 3 adjacent sectors S, with backhauling
- OFDMA techniques cancel intra-cell interference
- 1 active mobile user terminal **d**_i per sector
- 1 fixed relay **r**_i per sector
- 2 **shared** frequency bands (chunk)
- Synchronized DL transmissions

Communication Rate Limitations

- AWGN noise
- Inter-cell interference
- Fading, shadowing, path loss attenuation

Half-Duplex Relays Assumptions

- Full-duplex devices require 2 distinct RF circuitries
- Constrained applications, devices (cost, size, power)
- No duplication of RF section

-8

4. Novel Approach: Our proposal (1)

Half-Duplex...

- 'Deaf' to Interference when relay is transmitting
- 'Vulnerable' to Interference when relay is listening

... per Chunk Relays

'Half-Duplex' property is made independent on each chunk (with OFDMA systems)

Half-Duplex per Chunk Strategy (2 bands) (n+1) timeslots $\rightarrow n$

S i (chunk A)	m ₁	m ₂	m ₃	m ₄	m ₅		
$\mathbf{r_i}$ (chunk B)		n ₁	n ₂	n ₃	n ₄	n ₅	•••
t	1	2	3	4	5	6	

Idea

- Deal with the Cooperative Interference-Benefits Trade-Off
- Exploit 'half-duplex per chunk' nature of relays

Proposals

- Limit inter-cell interference on relays to improve effectiveness of cooperation
- Coordinate neighbor BS and RS transmissions (via backhaul)
- → Efficient Resource Allocation for Interference Mitigation

A half-duplex relay cannot be interfered on "chunk B" by neighbor transmissions if:

- It transmits on "chunk B"
- It listens on "chunk A"

-

4. Novel Approach: Allocation Patterns (2)

Two Cooperative Strategies for Resource Allocation

- Classic patterns (C1): standard cooperative protocol (reference) Unbalanced allocation of chunks \rightarrow one sector is advantaged (here S_1)
- Advanced patterns (A) exploit half-duplex per chunk nature of relays (proposals)

Advanced patterns cause additional interference BUT this is the issue of the Cooperative Trade-Off.

4. Novel Approach: Adaptive RRM (3)

Unbalanced assignments

A sector may be more 'protected' from inter-cell interference (here S_1)

→ System requirements (QoS, priority order, etc.) define 'advantaged' sector

Adaptive Allocation of Resources

Perceived power of signal and interference **depends on communication context**:

- Location of destinations (path loss attenuation)
- Shadowing, Fading (specific to each link and each chunk)

Each pattern experiences a different SINR

→ A pattern can perform well in a scenario and be worse in another!

Selection of the pattern optimizing an utility function

- Power consumption
- Overall amount of mutual information

Optimal pattern is selected among subsets of patterns:

- All classical patterns
- All advanced patterns
- All patterns

5. Simulation Results: Methodology

Metric, Utility Function

Results are computed on the viewpoint of destination d₁

- Location of d₁ in its sector is under control
- d₂ and d₃ move randomly in their sector (N_{pos})
 Random channel states for all links (fading, shadowing) (N_{chan})

 Average over N_{pos}. N_{chan} communication contexts
- Sector S_1 is advantaged in comparison to S_2 and S_3

Sum of mutual information amount (GMI_{d1}), given location of d₁

→ Specific expressions derived for each pattern

Power Consumption

- Each pattern involves specific transmitters (cooperation planning)
- Patterns spread over 1 or 2 timeslots
- → Power budget for transmission is specific to each pattern

Novel standards are willing to reduce TX power

- Penalize patterns with high power budget
- Grant patterns with low power budget
- → **GMI**_{d1} is weighted by overall transmission power

5. Simulation Results: Curves

6. Conclusions

Conclusion

- Cooperative transmissions
- **Coordinated** frequency allocation between sectors
- Minimization of power budget
- Channel aware resource allocation

Future work

Generalization to more than 2 chunks (for instance, 50 chunks – LTE-A., WiMAX)

Idea

- Available bandwidth can be divided into pairs of chunks
- On each pair of chunks, use the optimal allocation pattern we just introduced

Each cell has a **RRM scheduler** (several UE; to serve):

- Priority Scheduling (sort UE, according to priority)
- AMC, Frequency Scheduling (define MCS for UE; and chunks where transmit)

A common **RRM controller**:

- Combine requirements of three schedulers
- **Double Optimization:**

 - Which pattern is optimal on the current pair of chunks?

Thanks!

Loyalty Entrepreneurship
Team work
Innovation

Classical vs. Advanced Patterns (DF protocol)

Low TX power

Selection among all classical allocation patterns

Selection among all proposed allocation patterns

High TX power

Double optimization:

Pairing of chunks

Allocation pattern

Adaptive RRM Algorithm: Extension to more than 2 chunks

We assumed **one user per sector** but this algorithm applies to **several users per sector**

- \triangle Centralized scheduler assigns x_i chunks to sector S_i
- These x_i chunks can be **orthogonally** allocated (OFDMA) to at most x_i users in S_i

References

[Xiang07]: Soft Frequency Reuse

Y. Xiang, J. Luo and C. Hartmann, "Inter-Cell Interference Mitigation through Flexible Resource Reuse in OFDMA based Communication Networks," Proc. European Wireless 2007, pp. 1–7, Apr. 2007.

[Calvanese07], [Mohajer08], [Yong07]: Cooperation

- S. Mohajer, S.N. Diggavi, C. Fragouli and D. Tse, "Transmission Techniques for Relay-Interference Networks," IEEE Allerton Conf. 2008, pp. 467-474, Sep. 2008.
- E. Calvanese Strinati, S. Yang and J-C. Belfiore, "Adaptive Modulation and Coding for Hybrid Cooperative Networks," IEEE ICC 2007, pp.4191-4195, Jun. 2007.
- Z. Yong, L. Jun, X. Youyun and C. Yueming, "An Adaptive Non-Orthogonal Cooperation Scheme based on Channel Quality Information," IEEE WiCom 2007, pp. 988-991, Sep. 2007.

[Tse05], [Cover06], [Gesbert07]: Main techniques, Power Control

- D. Tse and P. Viswanath, "Fundamentals of Wireless Communication," Cambridge Universty Press, May 2005.
- T.M. Cover and J.A. Thomas, "Elements of Information Theory," Wiley-Interscience, 2nd Edition, Jul. 2006.
- D. Gesbert, S.G. Kiani, A. Gjendemsjo and G.E. Oein, "Adaptation, Coordination and Distributed Resource Allocation in Interference-Limited Wireless Networks," IEEE Proc., vol. 95, no. 12, pp. 2393–2409, Dec. 2007.

[Boyd04]: Optimization

S. Boyd and L. Vandenberghe, "Convex Optimization," Cambridge University Press, Mar. 2004.

[Jafar08], [Perlaza08]: Interference Alignment

- K. Gomadam, V.R. Cadambe and S.A. Jafar, "Approaching the capacity of wireless networks through distributed interference alignment," IEEE GLOBECOM 2008, pp. 1-6, Nov. 2008
- S.M. Perlaza, M. Debbah, S. Lasaulce and J.-M. Chaufray, "Opportunistic Interference Alignment in MIMO Interference Channels," IEEE PIMRC 2008, pp.1-5, Sep.2008

