When 10 dB doesn't equal 10 dB: Performance Prediction for Future Cellular Networks

James Gross, Farshad Naghibi VDE Fachgruppe 5.2.4 / TU Darmstadt 18.02.2010

System Model

- OFDM-based centralized system (e.g. WiMAX, LTE)
- Various traffic types with different QoS requirements
- For each downlink phase, a scheduler passes J packets to the resource allocation unit

System Model II

- Optimize performance by assigning subcarriers dynamically
 - Requires channel knowledge & adequate time coherence
 - Known to outperform static schemes [Wong99, Rhee00]
- How to assign subcarriers optimally?
 - Maximize minimal rate → rate adaptive approach [Ergen03]

Subcarrier states

 $\begin{array}{ll} \max & \epsilon \\ \text{s. t.} & \displaystyle \sum_{j} x_{j,n} \leq 1 \quad \forall \ n \\ & \displaystyle \sum_{n} b_{j,n} \cdot x_{j,n} \geq \alpha_{j} \cdot \epsilon \quad \forall \ j \\ & x_{j,n} & : \text{Binary assignment variable} \end{array}$

- $b_{j,n}$: Capacity per subcarrier/terminal pair
 - α_i : Packet weight factor

UWIC

Problem Statement

- Assume a rate-adaptive scheme to be in place
- Scheduler basically needs some notion of ϵ
 - Should depend on J !
- Why is this difficult?

Any scheduling decision is related to an outage probability

Outage: Scheduled data unit can not be transmitted during DL

UMIC Interference-Limited Channel Transformations I

Exponentially distributed signal and interference gains:

$$g_j^s \sim \operatorname{Exp}(\frac{1}{\rho_j^s})$$

 $g_j^i \sim \operatorname{Exp}(\frac{1}{\rho_j^i})$

• Fixing the transmit and interference power yields the SINR:

$$\gamma_{j,n} = \frac{p_n^s \cdot g_{j,n}^s}{p_n^i \cdot g_{j,n}^i + \sigma_n^2}$$

• PDF
$$f_{\gamma_{j,n}}(y) = \left[\frac{\sigma^2}{P_I y + P_S} + \frac{P_I P_S}{(P_I y + P_S)^2}\right] \cdot e^{-\frac{\sigma^2}{P_S}y}$$

• CDF
$$F_{\gamma_{j,n}}(y) = 1 - \frac{P_S}{P_I y + P_S} \cdot e^{-\frac{\sigma^2}{P_S}y}$$

where $P_S = p_n^s \cdot \rho_j^s$ and $P_I = p_n^i \cdot \rho_j^i$.

UMIC Interference-Limited Channel Transformations II

- Derivation of exact statistics is difficult (impossible?):
 - Exhaustive search (NP hard)!
- - Can be done by applying order statistics
- Example resulting PDF and CDF of the best subcarrier:

$$f_{\tilde{\gamma}_{j,(1)}}(x) = A_{j,(1)} \left[1 - \frac{P_S}{P_I x + P_S} \cdot e^{-\frac{\sigma^2}{P_S} x} \right]^{A_{j,(1)} - 1} \\ \left[\frac{\sigma^2}{P_I x + P_S} + \frac{P_I P_S}{(P_I x + P_S)^2} \right] \cdot e^{-\frac{\sigma^2}{P_S} x}$$

$$F_{\tilde{\gamma}_{j,(1)}}(x) = \left[1 - \frac{P_S}{P_I x + P_S} \cdot e^{-\frac{\sigma^2}{P_S}x}\right]^{A_{j,(1)}}$$

Illustration of SINR PDFs

- 48 subcarrier, 6 terminals (only first terminal considered)
- Noise-limited system vs. interference-limited system
- Average SNR/SINR = 5 dB

Higher gains in the interference-limited case!

- Given a system specification:
 - Adaptive modulation with SNR/SINR switching points
 - Rate per subcarrier is a random variable
 - → Obtain rate PMFs $z_{j,(i)}$ for each chosen subcarrier based on SNR/SINR distribution functions
- Total rate per terminal is sum of single subcarrier rates:

$$Z_j = \sum_{i=1}^{l_j} z_{j,(i)}$$

Total rate PMF is obtained by convolution:

$$p(Z_j) = \bigotimes_{i=1}^{l_j} p\left(z_{j,(i)}\right)$$

Note: <u>This is only true if random variables are independent</u>. This is not the case (order statistics!), we still apply this as approximation and compare the obtained bound with simulations!

Numerical Results I

- VoIP capacity for different SNR / SINR settings
 - Comparison schemes:
 - Static resource allocation (diversity schemes, no CQI usage)
 - Dynamic (optimal) allocation (Band AMC, simulated performance)
 - Bound on optimal allocation

In the interference-limited case: received <u>signal</u> power is fixed while interference power is increased (starting at 10 dB)

Numerical Results II

- Effect of received powers on system capacity:
 - Fixed average SINR 5 dB
 - Varying received signal power and interference power

- Diversity scheme has decreasing performance
- Dynamic scheme has increasing performance !
- Reason given by the SINR distributions

UMIC **Numerical Results III** Effect of different receive powers on VoIP capacity 15 dB 10 dB 40 50 Static bound at SINR = 10 dB Number of supported terminals Number of supported terminals er bound at SINR = 10 dB at SINR = 10 dB 40 30

- Same performance behavior observed as for the 5 dB case
- **Performance prediction works well**

-78

0

-92

Conclusions

- Accurate performance models required for adaptive wireless networks:
 - Admission control
 - Scheduling
 - Handoff decisions
 - Network planning
- Difficult to obtain such models due to random behavior of the instantaneous capacity in dynamic algorithms
- This talk: models for interference-limited dynamic OFDMA
 - Performance prediction possible, significant improvement of state-of-the art
 - Still, performance gap remains (recall: exhaustive search!)
 - Model reveals important performance characteristic for interference-limited OFDMA cells:
 - Using multi-user diversity: Don't care about interference, higher receive power is better (at constant SINR)
 - Diversity schemes: The lower the interference power the better is the performance (at constant SINR)
 - Reason due to SINR distributions and the influence of transmit and interference powers

