

#### Technische Universität München Lehrstuhl für Kommunikationsnetze Prof. Dr.-Ing. J. Eberspächer



VDE/ITG Fachgruppe 5.2.4 Workshop Darmstadt 2010 Interference Management and Cooperation Strategies in Communication Networks

# Interference Management: From Autonomous to Closely Coordinated Approaches

Jan Ellenbeck jan.ellenbeck@tum.de



# Trend from Decentralization to close Coordination



#### LTE Release 8

- IM usually means Interference Coordination by reuse restrictions
- Decentralized organization:
  - no central control (RNC)
  - loose coupling between eNBs
  - only some indicators (HI, OI, RNTP) defined

#### LTE-Advanced Release 10

- Coordinated Multipoint (CoMP) discussed as aggressive IM technique
- Coordinated scheduling/beamforming
- Joint processing in Uplink/Downlink
- Very tight coupling between eNBs:
  - high backhaul signaling bandwidths
  - very tight delay requirements





## **Classification of Interference Management Schemes**



#### **Interference Management (IM)** Inter Cell Interference Coordination (ICIC) Reuse Coordination **CoMP** Fixed **Adaptive** Coordinated **Network MIMO Beamforming Fractional Fractional** Frequency Frequency Computational Complexity, Signaling Overhead Reuse Reuse Centralized schemes **Decentralized** schemes **Autonomous** schemes



# **Adaptive Reuse Coordination**



#### **Adaptive Reuse Coordination:**

- Trade-off between spectrum reuse and interference avoidance
- Previous schemes mostly static



Source: Ericsson Research

#### **Desirable properties:**

- Dynamic scheme:
  - adapts to load situations
  - can handle uneven load distributions
  - should be stable (convergence)

- Decentralized scheme
  - no central Radio Network Controller (RNC)
  - base stations should self-organize
  - can use signaling via X2 interface
  - optionally: autonomous operation

#### **Use cases:**

- Reuse Coordination in Femtocell deployments, especially Femto-to-Femto interference coordination
- Here: Results for Reuse Coordination between eNBs in cellular systems



# Reuse Coordination example: LTE uplink



#### Approach:

- Each eNB chooses "best" resource subset based on local interference situation
- Base station only uses resource subset:
  - avoids interference on other resources
  - fast scheduling of users within subset possible
- Iterative process adapts to:
  - changes induced by other cells
  - changing resource demand per cell

#### Here:

- Two schemes for the uplink:
  - autonomous operation
  - inter-cell signaling of HI indicators
- Convergence motivated by existence of Nash Equilibrium (for signaling-based approach)
- · Focus on scenarios with unevenly loaded cells

"Performance of Decentralized Interference Coordination in the LTE Uplink" J. Ellenbeck, H. Al-Shatri and C. Hartmann VTC-Fall, September 2009





# Performance Evaluation (avg. 10 users/cell)





#### **Cell Edge Throughput (5%-tile)**



Resource utilization: 28% of PRBs (on average)



- Dynamic schemes cope well with uneven load situation
- Quality of coordination at approx. 1/3 resource utilization almost as good as reuse 3



# Performance Evaluation (avg. 20 users/cell)







- Resource utilization: 56% of PRBs (on average)
- Dynamic schemes stable as reuse 1 and reuse 3 switch positions



# Performance Evaluation (avg. 30 users/cell)





# Cell Edge Throughput (5%-tile) | Autonomous | Autonomous

- Resource utilization: 83% of PRBs (on average)
- Very limited room for interference avoidance
- Only slight improvement over reuse 1 remains



#### **Limitations of Reuse Coordination**



- Modern systems close to capacity:
  - Adaptive Modulation and Coding
  - Turbo Codes
  - Hybrid ARQ retransmissions
  - multiple Rx antennas

$$C = \frac{1}{R} \cdot \log_2 \left( 1 + \frac{S}{N + I(R)} \right)$$



Spectral efficiency C [bits/s/Hz]

- decreases linearly with higher frequency reuse factors (R >= 1)
- reuse factor 1/R might offset gains from higher capacity due to lower interference I(R)
- → Avoid reuse vs. interference trade-off by using other domains for coordination, e.g. coordination in the spatial domain



# **Beamforming promises to lower interference**



#### Beamforming

- directional transmission towards a desired user via multiple antennas
- increases received signal strength, decreases ICI

### Codebook based beamforming

- Uniform Linear Array (ULA) with 4 Antennas
- 8 possible beam patterns, chosen from the LTE precoding codebook specified in 3GPP TS 36.211 V 8.7.0

 Mobile station (MS) reports the most suitable Precoding Matrix Index (PMI) to the BS









## Beamforming should be coordinated among cells



- In general, beamforming lowers interference emitted to other cells
- If beams "collide", no SINR gain is realized
- Beamforming together with multi-user scheduling leads to highly fluctuating interference levels "flash-light effect"
  - → deteriorates performance of link adaptation

#### Coordinated beamforming thus promises:

- to increase average SINR by avoiding collisions
- increase performance due to better link adaptation



11



# Adaptively allocating resources to beam groups









# Beam coordination outperforms other schemes...







# ...due to higher and more predictable SINR





"Autonomous Beam Coordination For the Downlink of an IMT-Advanced Cellular System" J. Ellenbeck, M. Hammoud, B. Lazarov, and C. Hartmann European Wireless, April 2010



### **Outlook: Coordinated Multi Point Transmission**



Source: 3GPP

- Main technical improvement discussed for LTE-Advanced (decision in March 2010)
- "Interference Management on Steroids"
- Extends high-throughput coverage, improvements especially for the cell-edge
- Downlink:
  - Dynamic coordination of multiple geographically separated base stations
  - Possible schemes:
    - · coordinated scheduling and/or beamforming
    - joint processing/transmission ("Network MIMO")

Coherent combining or dynamic cell selection



Joint transmission/dynamic cell selection



Coordinated scheduling/beamforming

- Uplink:
  - Reception of uplink transmission from a mobile at multiple base stations
  - Scheduling decisions can be coordinated





# Thank You