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Overview

I Motivation: femtocell interference scenarios

I Problem statement

I Previous work

I Uplink - downlink duality

I Iterative algorithm

I Relation to Lagrange dual problem

I Simulation results
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Femtocells
Home-Basestation

Why femtocells?

I Consumer: improved (indoor) coverage, bundling of services: fixed mobile

convergence (FMC).

I Operators: reduced investments and costs for network operation, smaller cells

⇒ improved coverage and capacity, win customer loyalty.

I Femtocells are integral part of 3GPP standards UMTS/LTE and

LTE-Advanced.

Change of paradigm: cell-planning versus self-contained deployment.
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Interference Scenarios in Femtocells
As identified by FemtoForum
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What is cognitive radio?

Idea was first presented in a paper by Mitola in 1999.

One out of many definitions:

I Cognitive radio is a paradigm for wireless communication in which either a

network or a wireless node changes its transmission or reception

parameters to communicate efficiently avoiding interference with licensed or

unlicensed users.

I This alteration of parameters is based on the active monitoring of several

factors in the external and internal radio environment, such as radio

frequency spectrum, user behavior and network state.
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Secondary Network
Quality of Service (QoS) Requirements

Secondary Network Basestation

Secondary
User 3 (SU)

Secondary
User 2 (SU)

Secondary
User 1 (SU)

Primary
User 3 (PU)

Primary
User 1 (PU) h3

h2
h1

γk QoS target of kth SU
1

γK+l
interference temperature
at lth PU
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Secondary Network Basestation

Secondary
User 3 (SU)

Secondary
User 2 (SU)

Secondary
User 1 (SU)

Primary
User 3 (PU)

Primary
User 1 (PU) h3

h2
h1

γk QoS target of kth SU
1

γK+l
interference temperature
at lth PU

K single antenna SUs

Nt antennas at the SNB

Symbols of SUs s1, ... , sK

Powers p1, ... , pK

Beamformers u1, ... ,uK

Transmitted signal vectors

x(n) =
∑K

k=1

√
p

k
uksk(n)

Received signal at the kth SU

yk(n) = hT
k x(n) + zk(n)

Channel covariance Rk ,E{hkh
H
k }

February 18, 2010 | NTS TU Darmstadt | Marius Pesavento | 6 NTS



Cognitive Radio Network
Quality of Service (QoS) Requirements

Secondary Network Basestation

Secondary
User 3 (SU)

Secondary
User 2 (SU)

Secondary
User 1 (SU)

Primary
User 3 (PU)

Primary
User 1 (PU) h3

h2
h1

γk QoS target of kth SU
1

γK+l
interference temperature
at lth PU

Optimization problem

minu1,...,uK ,p1,...,pK

∑K
k=1 pk

Subject to

SINRDL
k , pku

H
k Rkuk∑K

i=1
i 6=k

piuH
i Rkui+σ2

k

≥γk

pk ≥ 0, k = 1, ... , K

Literature

Semi-definite relaxation: [Boche/Schubert,’02;

Bengsson/Ottersten,’01]

Iterative solution: [Bengsson/Ottersten,’01]
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Cognitive Radio Network
Maximum Interference Constraints

Secondary Network Basestation

Secondary
User 3 (SU)

Secondary
User 2 (SU)

Secondary
User 1 (SU)

Primary
User 3 (PU)

Primary
User 2 (PU)

Primary
User 1 (PU)

h2
h1

h3

hK+1

hK+2

hK+3

γk QoS target of kth SU
1

γK+l
interference temperature
at lth PU

R1, ... ,RK channel cov. of SUs

RK+1,...,RK+Lchannel cov. of PUs

Optimization problem

minu1,...,uK ,p1,...,pK

∑K
k=1 pk

Subject to

SINRDL
k , pku

H
k Rkuk∑K

i=1
i 6=k

piuH
i Rkui+σ2

k

≥γk

IDL
l ,

∑K
i=1 piuH

i RK+lui≤ 1
γK+l

pk ≥ 0; k = 1, ... , K ; l = 1, ... , L

Literature

Semi-definite relaxation: [Cumanan et al.,’08]

Optimality?

February 18, 2010 | NTS TU Darmstadt | Marius Pesavento | 6 NTS



Semi-definite relaxation
Cumanan et al.,’08

Original optimization problem

min
u1,...,uK ,p1,...,pK

K∑

k=1

pk

Subject to

pku
H
k Rkuk−γk

K∑

i=1
i 6=k

piu
H
i Rkui≥γkσ

2
k

γK+l

K∑

i=1

piu
H
i RK+lui − 1≤0

pk ≥ 0; k = 1, ... , K ; l = 1, ... , L

Equivalent problem

substituting Wk = pkuku
H
k

min
W1,...,Wk

K∑

k=1

tr{Wk}

Subject to

tr{WkRk} − γk

K∑

i=1
i 6=k

tr{WiRk}≥γkσ
2
k

γK+l

K∑

i=1

tr{RK+lWi} ≤ 1

Wk º 0; WH
k = Wk ; rank{Wk} = 1

pk ≥ 0; k = 1, ... , K ; l = 1, ... , L
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Problem reformulation

Original optimization problem

min
u1,...,uK ,p1,...,pK

K∑

k=1

pk

Subject to

SINRDL
k , pkuH

k Rkuk∑K
i=1
i 6=k

piuH
i Rkui +σ2

k

≥γk

IDL
l ,

K∑

i=1

piu
H
i RK+lui≤ 1

γK+l

pk ≥ 0;

k = 1, ... , K ; l = 1, ... , L
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Problem reformulation

Equivalent problem
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u1,...,uK ,p1,...,pK

K∑
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pk
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k , pkuH

k Rkuk∑K
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i 6=k
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pk

Subject to
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k Rkuk∑K
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piuH
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Uplink-downlink duality

Downlink beamforming

Secondary
User 3 (SU)

Secondary
User 1 (SU)

Primary
User 3 (PU)

Primary
User 2 (PU)

Primary
User 1 (PU)

p2p1 p3

Secondary
User 2 (SU)

Secondary Network Basestation

u2u1 u3

pk downlink power of kth SU
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Uplink-downlink duality

Downlink beamforming

Secondary
User 3 (SU)

Secondary
User 1 (SU)

Primary
User 3 (PU)

Primary
User 2 (PU)

Primary
User 1 (PU)

p2p1 p3

Secondary
User 2 (SU)

Secondary Network Basestation

u2u1 u3

pk downlink power of kth SU

Virtual uplink beamforming

Secondary Network Basestation

Secondary
User 3 (SU)

Secondary
User 1 (SU)

Primary
User 3 (PU)

Primary
User 2 (PU)

Primary
User 1 (PU)

q2

q1

q3

qK+3

qK+2

qK+1

Secondary
User 2 (SU)

u2

q1

u1 u3

qk uplink power of kth SU

Duality: The optimal uplink and downlink beamformers are identical;

however their individual powers are generally different!
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Uplink-downlink duality

Downlink problem

min
u1,...,uK ,p1,...,pK+L

K∑

k=1

pk

Subject to

SINRDL
k , pkuH

k Rkuk∑K
i=1
i 6=k

piuH
i Rkui +σ2

k

= γk

SINRVDL
K+l ,

pK+l∑K
i=1 piuH

i RK+lui

= γK+l

pk ≥ 0; pK+l ≤ 1

k = 1, ... , K ; l = 1, ... , L

Virtual uplink problem

min
u1,...,uK ,q1,...,qK+L

K∑

k=1

γkσ
2
kqk −

L∑

l=1

pK+lqK+l

Subject to

SINRVUL
k , qkuH

k Rkuk

uH
k

(∑K+L
i=1
i 6=k

qiγiRi +I

)
uk

= 1

qk ≥ 0

pK+l ≤ 1

k = 1, ... , K ; l = 1, ... , L
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Unique optimum solution
Relation of uplink-downlink dual to Lagrange dual

Lagrange dual of downlink problem

max
q1,...,qK+L

K∑

k=1

γkσ
2
kqk −

L∑

l=1

qK+l

Subject to

I − qkRk +
K+L∑
i=1
i 6=k

γiqiRi < 0

qi ≥ 0; k = 1, ... , K ; l = 1, ... , L

co
st

fu
n
ct

io
n

p

duatity gap

primal problem

dual problem
Lagrange

Lemma: The virtual uplink problem and the Lagrange dual of the downlink

problem have identical solution i.e. the duality gap is zero.

The problem can be solved using convex optimization. From this the optimality of

the semi-definite relaxation approach by Cumanan’08 immediately follows.
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Iterative algorithm

Initialization Initialize qk(1) = 1 for k = 1, ... , K + L

Iteration For t = 1, 2, ... until convergence, iterate

Step 1 Beamformer update: Find

µk = max||uk ||=1
qkuH

k Rkuk

uH
k


∑K+L

i=1
i 6=k

qi γiRi+I


uk

; k = 1, ... , K

SU uplink power update: qk(t + 1) = 1
µk

qk(t); k = 1, ... , K

Step 2 PU downlink power update: Find pK+l(t + 1) for l = 1, ... , L

PU uplink power update:

qK+l(t + 1) =

{
pK+l(t + 1)qK+l(t), if min{pl , ... , pK} ≥ 0

qK+l(t + 1), otherwise.

At convergence SU and PU downlink power computation.
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Benefits of iterative approach

Complexity For Nt Tx antennas and K SU the complexity order of the new

iterative algorithm grows as O{KN2
t } per iteration with the problem size.

The complexity of the semi-definite program base algorithm [Cumanam et al.

’08] grows as O{(KNt)
3} per iteration with the problem size and requires

approx. O{(KNt)
0.5} iterations until convergence.

Implementation The iterative algorithm enjoys simple implementation and

does not require the use of interior point software as for the SDP approach.

Adaptivity The iterative approach can easily be modified to work in adaptive

scenarios. This is not straight forward in the case for the SDP approach.
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Simulation setup

I K = 5 SU, L = 5 PU, Nt = 9 Tx at the SU basestation.

I PU interference temperature: −6dB.

I SU SINR targets γ1 = 4.51dB, γ2 = 4.45dB, γ3 = 8.08dB, γ4 = 5.37dB,

γ5 = 4.45dB.

I Noise variance of −10dB.

I Rayleigh fading channel gains.

I Relative SU DL powers distribution at optimum: p1 = 0.15, p2 = 0.12,

p3 = 0.29, p4 = 0.27, p5 = 0.16.

I Optimal virtual PU DL powers: pK+1 = pK+2 = pK+3 = pK+4 = pK+5 = 1.
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Simulation results
Error of the transmit power versus number of iterations
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Simulation setup

I K = 5 SU, L = 5 PU, Nt = 9 Tx at the SU basestation.

I PU interference temperature: −6dB.

I random SU SINR targets γk ∈ [0, 10]dB.

I Noise variance of −10dB.

I Rayleigh fading channel gains.
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Simulation results
Histogram of number of iterations until convergence
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Conclusions

I Cognitive interference control in DL transmit beamforming.

I Established uplink-downlink duality.

I Showed the equivalence with the Lagrange dual problem.

I Proposed a computational efficient iterative algorithm.

I Simulation results showed the convergence of the algorithm to the optimal

solution.

I Future work: Robustness to channel mismatch, address the admission

problem.
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