

Modeling the Spectral Occupation for the Use in Cognitive Radios

Christian Körner, October 7th 2009 31st Meeting of the VDE/ITG-Group 5.2.4

CEL

Overview

- Options for the signalization and storing of spectral occupation
 - Knowledge of the standard parameters required
- Parameter estimation for an unknown standard
 - Channel segmentation
 - Estimation of channel periodicities
 - Mean within the periodic Interval

CR Scenario

- CR nodes signal spectral occupation to the CR network
 - Positions of nodes are known
- CR network builds occupation statistics
 - Probability of channel access
 - CR network identifies common white spaces

 Scope of this work: signalization and occupation statistics

Objectives of a Signalization within a CR Network

- Transmission of the spectral
 occupation to the CR network
 - 1. Compression for signalization and occupation statistic
 - ⇒ Definition of the signalization and storage efficiency per CR node: Γ defined as signalization bits per observed bandwidth and duration
 - 2. Position and time stamp possible
 - 3. Power information
 - 4. Prediction of the occupation
 - Reduction of Interference

Signalization without further Compression

Illustration of the signalization and storage options at the example of simulated GSM data

- Signalization / storage of the spectrogram without further compression
 - For comparison purposes only
 - Γ_{Spec} = 24 bit/s/Hz at 12 Bit resolution

Signalization after Occupied / Unoccupied Decision

- Occupied / unoccupied decision
 - Continuous signalization required
 - $\Gamma_{Bin} = 2 \text{ bit/s/Hz}$
- Image compression algorithms deliver an insufficient compression

Signalization and Occupation Statistics with Knowledge of the Standard

Signalization and occupation statistics:

 Fixed standard parameters, *PSD*_{max}, position, etc.
 Assumption for this slide: GSM standard is known

 Assumption for this slide: GSM
 Assumption for this slide: GSM
 Assumption for this slide: GSM

2. Changing user behavior

- Γ_{GSM} = 1 bit / 200 kHz / 577 µs = 0,0087 bit/s/Hz if all channels are occupied
- Drastic Compression
- Target for signalization overhead
- Efficient prediction possible

Signalization for Unknown Standards

- Estimation of the parameters for an unknown or flexible standard
 - ISM bands contain unknown transmitters.
 - Parameters may not be clearly defined in the standard, such as for radar applications.
 - Parameters of known standards may not be obtained by the CR node, if its A/D converter is too small.
- Assumption for the following slides: Parameters of the standard as center frequency, bandwidth, TDMA structure, etc. are unknown.

- Processing at the CR Node
 - 1. Spectral estimation
 - 2. Automatic channel segmentation
 - 3. Estimation of the channel power of each channel
 - 4. Estimation of the channel power periodicities
 - 5. Mean within the periodic interval
- Signalization of these parameters to the network
- Reconstruction of the spectral occupation within the CR network

GSM Scenario

Mean within T_0

- Splitting the channel power vector in intervals of duration T₀
- Mean and Max within the interval T₀

CÉL

Mean and Max Channel 14 GSM Scenario

- Channel 14 of the GSM Scenario
- Mean and Max within T₀

CEL

Spectrum GSM Scenario

Overview CR Parameter Estimation and Signalization

Reconstruction of the Occupation

• Normalized PSD in the channel

$$\widehat{S}_{Norm}(f) = \widehat{S}(f) / \sum_{f=\widehat{f}_l}^{\widehat{f}_h} \widehat{S}(f)$$

where $\hat{S}(f)$ is defined as the PSD in channel *ChN*.

Reconstructed spectrogram

$$\widehat{S}_{Recon}(f,t) = \left(\mu(t_I) - \widehat{N}_0(\widehat{f}_h - \widehat{f}_l)\right)$$
$$\widehat{S}_{Norm}(f) + \widehat{N}_0$$

Reconstruction GSM Scenario

CÉL

Difference Original and Reconstruction Scenario GSM

$$S_{Err}(f,t) = \hat{S}_{Recon}(f,t) - S(f,t)[dB]$$

Scenario Wireless Mouse

Spectrogram of a wireless mouse in the 2.4 GHz ISM band

 Channel segmentation

- Estimation of the channel power P̂_{Ch} (t) through integration over the channel bandwidth
- $T_0 e$ stimation using YIN method:

Channel	T ₀ /ms
1	96.6679
2	8.0566
3	8.0584
	(

Channel Power

- Illustration of channel 2
 - Mean and Maximum within the periodic interval

CE

PSD Scenario Wireless Mouse

CÉL

Reconstruction Scenario Wireless Mouse

- 20

Difference between Original and Reconstruction

$$S_{Err}(f,t) = \hat{S}_{Recon}(f,t) - S(f,t)[dB]$$

PSD in dB/MHz

CEI

Modeling of the Spectral Occupation for the Use in Cognitive Radio Systems

Thank you for your attention!

