

The E3 Architecture and Solutions for Cognitive Radio Networks

Jens Gebert Alcatel-Lucent Bell Labs Germany

31. Meeting of VDE/ITG
Group 5.2.4 "Mobility in IPbased networks"
Workshop "Cognitive Radio – Technical Challenges and Commercial Implications"

- **E3 Overview**
- Architecture
- **Self-Organization/Self-Optimization**
- **Flexible Use of Spectrum**
- Prototyping Environment
- **Cognition Enablers**
- **Standardization of Cognitive Systems**
- **Conclusions**

E³ is an European Project on End-to-End-Efficiency under the 7th Framework Program of the European Commission, addressing the core of the strategic objective "The Network of the Future"

Top Level Objectives:

- Cognitive Radio System design
- Gradual, non-disruptive evolution of wireless networks
- Increased efficiency of wireless network operations

Project Duration:

• Jan. 2008 – Dec. 2009

- □ Introducing Reconfigurable, Cognitive Systems in the B3G world:
- Evolution of B3G systems to Cognitive Radio Systems
- Improve utilisation of spectrum and radio resources
 - ⇒ Dynamic Spectrum Management
 - \Rightarrow Support of heterogeneous standards
 - ⇒ More efficient Joint Radio Resource Management (Short term)
- Reconfigurable Base Stations and Reconfigurable Terminals
- Self-Management and Self-Optimisation of
 - ⇒ Radio Network Infrastructure
 - \Rightarrow Cognitive Devices
- Cognition Support Mechanisms
 - ⇒ Cognitive Pilot Channel, Spectrum Sensing

C³ The pillars of the architecture

- AEM Autonomic Entity Management
- CCR Cognitive Control Radio
- **CPC- Cognitive Pilot Channel**
- **SS Spectrum Sensing**
- RCM Reconfiguration Control Module
- DSM- Dynamic Spectrum Management
- DSNPM Dynamic Selforganizing Network Planning & Management
- Self-x-for-RAN Self-x for Radio Access Networks
- JRRM Joint Radio Resource Management
- RRM Radio Resource Management

Functional Architecture (FA) Single Operator Case

Functional Architecture (FA) Multi Operator Case

Heterogeneous Wireless System and Functional Building Blocks

E Self-Organization of Networks (1/4)

- **Self-Management and Self-Optimisation of Cognitive Systems:**
 - \Rightarrow Awareness of user, device and context information
 - \Rightarrow Policies derivation
 - \Rightarrow Decision making
 - \Rightarrow Reconfiguration
 - \Rightarrow Learning
- Cognitive Systems determine and configure their operation based on the knowledge and experience obtained through learning,
 - \Rightarrow In a reactive manner,
 - i.e. responding to the detection of problematic situations
 - ⇒ Proactively to prevent issues undermining the optimal system function
- Simulation of new approaches & algorithms
- Recommendations for service-, network providers & equipment manufacturers

Self-Organization of Networks (2/4)

Self-X: Self-configuration, Self-optimisation, self-healing

- ⇒ for single-RAT networks as well as heterogeneous networks
- \Rightarrow Spectrum selection, inter-cell interference coordination
- \Rightarrow Cell-outage compensation, cell self-reconfiguration
- \Rightarrow Handover optimisation, load balancing

C³ Self-Organization of Networks (3/4)

Input:

- Context: traffic, mobility, interference, element status
 - ⇒ Change of element status, e.g., fault of some component
 like TRX → trigger for self-healing mechanisms
- Profiles: equipment, application, user requirements and preferences
- Policies: optimization objectives, strategies, constraints

Optimization mechanisms:

- Algorithms for various time scales, optimal or near-optimal
- □ Short time scale: greedy, online
- Mid-term: simulated-annealing, taboo search, genetic algorithms

Self-Organization of Networks (4/4)

Output:

- Configuration at various levels e.g.:
 - \Rightarrow RAT per transceiver
 - ⇒ Spectrum per transceiver
 - ⇒ QoS level determination per user class

Learning:

- Contexts encountered in time space
- Solutions applied and efficiency

Impact:

 Optimal QoS, operational efficiency, automation of tasks, minimization of human involvement, reduction of operational expenditure (OPEX)

Flexible use of spectrum

- Spectrum management for optimal spectrum usage
 - \Rightarrow Dynamic Spectrum Allocation (DSA):
 - Spectrum control in the network
 - Medium/long term radio resource optimisation

- \Rightarrow Dynamic Spectrum Selection (DSS):
 - Spectrum control entity in the terminal
 - short term radio resource optimisation

Reconfigurable Base Stations and Terminals

- Reconfigurable base stations
 - ⇒ Base Station Configuration and Reconfiguration to maximise the networks efficiency

Reconfigurable terminals

Cognition enablers - Especially for environment with flexible spectrum management

- ⇒ Cognitive Pilot Channel
 - Distributes information on available radio accesses and their spectrum
- ⇒ Cognitive Control Radio
 - Exchange of Cognitive Control information between terminals
- \Rightarrow Spectrum Sensing

Cognitive Pilot Channel (CPC)

- Cognitive Pilot Channel (CPC): a channel providing information for the operations of Cognitive Radio Systems
- Use Cases
 - ⇒ Start-up scenario
 - ⇒ Secondary spectrum usage
 - \Rightarrow Radio resource optimisation

Information model:

Out-band CPC

□ In-band CPC

Combinations of Out-band CPC and In-band CPC are also possible

CPC configuration on network side Here: Downlink in-band broadcast CPC

C³ Alternative procedure: Dedicated CPC Information Request

Regulation/Standardization and E³

- Standardization activities to support global harmonization
- Activities in ETSI

(European Telecommunications Standards Institute):

- \Rightarrow E²R II opened the path towards ETSI activities, and E³ continued participating actively
- ⇒ ETSI Technical Committee on Reconfigurable Radio Systems (TC RRS) has been created in 2008, extension of mandate in Sept. 2009.
- \Rightarrow Several reports have been published in 2009, e.g.
 - ETSI TR 102 682 "Functional Architecture (FA) for the Management and Control of Reconfigurable Radio Systems"
 - ETSI TR 102 683 "Cognitive Pilot Channel"
 - ETSI TR 102 838 "RRS Standardisation Issues in the area of SDR and CR – results or RRS in 2009"

Norld Class Standards

IEEE Standards Coordinating Committee 41 (SCC41) on "Dynamic Spectrum Access Networks":

IEEE P1900.4

- ⇒ E3 project has been very active in the initiation, consolidation and successful finalization of the first P1900.4 version of the draft standard
- ⇒ 1900.4 "Standard for Architectural Building Blocks Enabling Network-Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks", published in Feb. 2009
- \Rightarrow Continuation in the area of
 - \Rightarrow detailed interface design (1900.4.1)
 - \Rightarrow DSA in White Space Frequency Bands (1900.4a)
- IEEE P1900.6 focuses on the interfaces between sensing and decision making mechanisms in cognitive radios, cognitive radio systems and in dynamic spectrum systems in general

Regulation: ITU WP 1B on CR E^3 monitors E³ contributes ITU-R WP5A on CR **Autonomic and Cognitive Management:** ETSI RRS WG3 (CPC) E³ leads IEEE SCC41 P1900.6 E³ contributes **System Architecture and Interfaces:** IEEE SCC41 P1900.4 E³ contributes ETSI RRS WG3 (FA) E³ leads **Radio Equipment Architecture and Interfaces:** ETSI RRS WG2 E³ contributes SDR-F (Digital RF) E³ leads ETS **Specification Techniques:** OMG, SDR-F, OMA, E^3 contributes ACF

World Class Standards

Alcatel-Lucent

- **E3** Functional Architecture including functionalities for
 - \Rightarrow Self-organizing networks and autonomous entities
 - \Rightarrow Reconfiguration of network elements and devices
 - ⇒ Dynamic Spectrum Management
 - \Rightarrow Joint Radio Resource Management
 - \Rightarrow Cognition Enablers (CPC, CCR, SS)
- Ongoing related standardization activities (ETSI RRS, IEEE SCC41) to support global harmonization
- E3 project has made fundamental design and development work for introducing cognitive systems into wireless communication infrastructures

Thank you!

Acknowledgement

This work was performed in project E3 which has received research funding from the Community's Seventh Framework program. This paper reflects only the authors' views and the Community is not liable for any use that may be made of the information contained therein. The contributions of colleagues from E3 consortium are hereby acknowledged.

