Primary Users in Cellular Networks A Large-Scale Measurement Study

Daniel Willkomm, Adam Wolisz TU Berlin, Telekommunikationsnetze (TKN) Sridhar Machiraju, Jean Bolot Sprint Academic Research Group

31. Treffen der VDE/ITG-Fachgruppe 5.2.4 07.10.2009 Hamburg-Harburg

Dynamic Spectrum Alloc. In Cellular Networks

- Primary User (PU) don't use all their spectrum (at all location, all the time)
- Room for Secondary User (SU) to exploit idle spectrum
- But:
 - How much idle spectrum is out there?
 - How does it change (over space and time)?
- 1. Measure behavior of primary users

3. Impact on secondary usage of licensed spectrum

Our Measurements

- Network centric view
- 100's base stations, 3 weeks, 10's Mio of calls
- Caveats
 - Beginning and end cell
 - If different, assume static, or mobile (half/half)
 - CDMA number of calls only estimate of remaining capacity

Sample Call Load in 3 Cells

Willkomm

System-wide vs. Cell-based Model

 \triangle

 \triangle

System-wide model

 \triangle

 \triangle

Temporal Behavior of PUs

- Capacity = total capacity of all cells (system-wide model)
- Examine total PU load (t)
 - PU load (t) = nb of calls at time t

Call-based model:

- PU behavior can be defined by call arrival and duration
- Typically assumed stationary
- Typically modeled by exponential distributions
 - E.g. Cellular spectrum pricing: Dyspan07, Infocom08

Mean Call Arrival Rate and Duration

Non stationary (assume stationary over 1 hour)

Primary Users in Cellular Networks

Daniel

Willkomm

Distribution of Call Inter-arrival Times

Call inter-arrivals are exponentially distributed

Primary Users in Cellular Networks

Daniel

Villkomm

Distribution of Call Duration

- Call durations are not exponentially distributed
- Call durations are not log-normal

Daniel

Willkomm

Distribution of Call Duration – Outlier Events

Daniel Willkomm

10

Alternate Model: Random Walk

- Call duration hard to model => abstract out
- $PU \text{ load } (t + \Delta) = PU \text{ load } (t) + (-1)^{\circ}$

Δ consistent with exponential

Daniel Willkomm

Temporal Behavior of PUs – Cell-based

- Examine PU load (t) in one cell only
- How well do earlier models work?

- Call model good for 90% of the hours
- Random walk model only ok

Daniel

Villkomm

Impact on SUs – Stability of Available Spectrum

- Variation of PU load within 1 hour
 - Measure 1-minute load

Daniel

/illkomm

- Compute variance and max difference, avg over all cells
- Steady availability of spectrum at night
- Large variations => short data transmission T_d (period for periodic sensing)?

¹ Choosing a Data Transmission Time T_d

Pick large T_d at night

Daniel

Willkomm

Pick low T_d during day, lowest in afternoon

Primary Users in Cellular Networks

14

Key Takeaways

- A lot of unused spectrum in cellular bands
 - Secondary usage possible, especially night and weekends
- In)validate models of PU behavior
 - Arrival process Poisson, but non stationary
 - Duration NOT Poisson
 - process complex (not log-normal either)
 - different day and night
 - "Burstiness" especially at high loads
- Application to DSA
 - PU model to price/negotiate spectrum usage
 - Need to adjust data transission period to time of day

Thank you

- Joint work with SPRINT Research, CA, USA
- Results presented in DySPAN 2008 (best paper award in the technical track) IEEE Communication Magazine, March 2009

Thank you for your attention

Questions?

Comments?

