Primary Users in Cellular Networks A Large-Scale Measurement Study

Daniel Willkomm, Adam Wolisz
TU Berlin, Telekommunikationsnetze (TKN)
Sridhar Machiraju, Jean Bolot
Sprint Academic Research Group
31. Treffen der VDE/ITG-Fachgruppe 5.2.4
07.10.2009 Hamburg-Harburg

Telecommunication
Networks Group
http://www.tkn.tu-berlin.de

Dynamic Spectrum Alloc. In Cellular Networks

- Primary User (PU) don't use all their spectrum (at all location, all the time)
- Room for Secondary User (SU) to exploit idle spectrum
- But:
- How much idle spectrum is out there?
- How does it change (over space and time)?

1. Measure behavior of primary users

2. Model behavior of primary users
3. Impact on secondary usage of licensed spectrum

Our Measurements

- Network centric view
- 100's base stations, 3 weeks, 10 's Mio of calls
- Caveats
- Beginning and end cell
- If different, assume static, or mobile (half/half)
- CDMA - number of calls only estimate of remaining capacity
- Limited resolution
\triangle Base Station

Sample Call Load in 3 Cells

5
 System-wide vs. Cell-based Model

System-wide model

Cell-based model

Temporal Behavior of PUs

- Capacity = total capacity of all cells (system-wide model)
- Examine total PU load (t)
- PU load $(t)=n b$ of calls at time t

Call-based model:

- PU behavior can be defined by call arrival and duration
- Typically assumed stationary
- Typically modeled by exponential distributions
- E.g. Cellular spectrum pricing: Dyspan07, Infocom08

Mean Call Arrival Rate and Duration

mean call arrival rate

mean call duration

- Non stationary (assume stationary over 1 hour)

Distribution of Call Inter-arrival Times

- Call inter-arrivals are exponentially distributed

Distribution of Call Duration

- Call durations are not exponentially distributed
- Call durations are not log-normal

Distribution of Call Duration - Outlier Events

American Idol

${ }^{11}$ Alternate Model: Random Walk

- Call duration hard to model => abstract out
- PU load $(t+\Delta)=P U$ load $(t)+(-1)^{\circ}$

- Δ consistent with exponential

${ }^{12}$ Temporal Behavior of PUs - Cell-based

- Examine PU load (t) in one cell only
- How well do earlier models work?

- Call model good for 90\% of the hours
- Random walk model only ok

- Variation of PU load within 1 hour
- Measure 1-minute load
- Compute variance and max difference, avg over all cells
- Steady availability of spectrum at night
- Large variations => short data transmission T_{d} (period for periodic sensing)?
${ }^{14}$ Choosing a Data Transmission Time T_{d}

- Pick large T_{d} at night
- Pick low T_{d} during day, lowest in afternoon
- A lot of unused spectrum in cellular bands
- Secondary usage possible, especially night and weekends
- (In)validate models of PU behavior
- Arrival process Poisson, but non stationary
- Duration NOT Poisson
- process complex (not log-normal either)
- different day and night
- "Burstiness" especially at high loads
- Application to DSA
- PU model to price/negotiate spectrum usage
- Need to adjust data tranmission period to time of day

${ }^{16}$ Thank you

Joint work with SPRINT Research, CA, USA

- Results presented in

DySPAN 2008 (best paper award in the technical track)
IEEE Communication Magazine, March 2009

Thank you for your attention

Questions?

Comments?

