

Institute of Computer Science Department of Distributed Systems Prof. Dr.-Ing. P. Tran-Gia

QoE based Resource Management in Wireless Networks

Dirk Staehle University of Würzburg Chair of Distributed Systems

www3.informatik.uni-wuerzburg.de

Overview

Introduction

Idea of QoE based resource management

Two examples:

- VoIP Support in Mesh Networks
- QoE based VoIP scheduler in OFDMA networks

Conclusion

Introduction

- Resource management in wireless and wired networks based on QoS parameters
 - scheduling, admission control ensure QoS
 - decoupling makes life "easy", "I work on Layer 2"
- QoS parameters on MAC do not fully express quality on application layer
 - setting of QoS parameters difficult
- Approaches for monitoring application layer quality (Quality of Experience, QoE) available
- Idea: use of QoE for resource management in wireless networks

QoE based Resource Management

- Main functionality
 - QoE assessment
 - by the application or by the network
 - QoE based resource management decision
 - by the application or by the network
 - Signaling if assessment and resource management are not located on same machine

Intrinsic QoS vs. Subjective QoS

- Resource management typically assures long term packet loss ratio
 - Intrinsic QoS (IQ)
- Voice quality strictly speaking means speech quality
 - function of the packet loss pattern
 - bursty worse than regular/uniform
- Speech quality is highly subjective
 - Quality of Experience (QoE) or Subjective QoS (SQ)

Assessment of Subjective and Objective QoS - Example: Speech Quality -

- Perception depends on context, content, auditory and memory potentials
- Auditory assessment
 - ultimate assessment, involves humans
- Perceptual evaluation of speech quality (PESQ)
 - compare speech sequences before and after transmission
- Instrumental assessment
 - Objective QoS (OQ)
 - map measured parameters to known SQ ratings
 - E-Model: measure and map information loss, delay, noise to SQ rating

E-Model and MOS

- ETSI study adopted by ITU
 - ITU G-107 The E-Model, a computation model for use in transmission planning

R-factor	Quality of voice rating	MOS	
90 < R < 100	Best	4.34 - 4.5	
80 < R < 90	High	4.03 – 4.34	
70 < R < 80	Medium	3.60 - 4.03	
60 < R < 70	Low	3.10 - 3.60	
50 < R < 60	50 < R < 60 Poor		

Example: MOS for FTP

S. Khan, S. Duhovnikov, E.Steinbach, M. Sgroi, W. Kellerer, "Application-driven Cross-layer Optimization for Mobile Multimedia Communication using a Common Application Layer Quality Metric", IWCMC 2006

EXAMPLE 1: DYNAMIC BANDWIDTH CONTROL IN WIRELESS MESH NETWORKS: A QUALITY OF EXPERIENCE BASED APPROACH

Rastin Pries, David Hock, Nico Bayer, Dirk Staehle, Veselin Racocevic, Bangnang Xu, Phuoc Tran-Gia ITC Specialist Seminar, Karlskrona, Sweden, 2007

Example 1: VoIP Support in Mesh Networks

- Analysis of real-time applications in Wireless Mesh Networks
- Very good performance in undisturbed networks
- In highly loaded networks quality decrease due to
 - internal queuing problems
 - cross-traffic influences
- → Proposition of a mechanism to detect problems and to react on them to conserve the Quality of Experience level

Implementation - Structure

Traffic Observer

Alerting of QoE decrease if certain thresholds are exceeded.

Available: Quality of Service (QoS) parameters

- Packet loss, Jitter
- Desired: Quality of Experience (QoE) parameter
 - Mean Opinion Score (MOS)
- → Estimation of QoE parameter MOS by QoE/QoS Matching:

$\operatorname{MOSQUSS} = \alpha_1 \cdot e^{-\alpha_1} + \gamma_1 \qquad \operatorname{MOSQU}_{\operatorname{IPD}} = \alpha_2 \cdot e^{-\alpha_2} + \gamma_1$	$MOS(\phi ss) = \alpha_1 \cdot e^{-\beta_1 \cdot loss} + \gamma_1$	$\text{MOS}(td_{\text{IPD}}) = \alpha_2 \cdot e^{-\beta_2 \cdot std_{\text{IPD}}} + \gamma_2$
---	--	---

Quality Level	MOS	Packet loss	Threshold loss	std _{IPD}	Threshold std _{IPD}
Good	3.8 – 5	below 0.3 %		below 1.7 ms	
Average	3 – 3.8	0.3 – 1.7 %	0.1 %	1.7 – 7.2 ms	1.5 ms
Bad	1 - 3	above 1.7 %	1.5 %	above 7.2 ms	7.0 ms

Out-Band Scenario

Performance Measurements – Out-Band Scenario

EXAMPLE 2: QOE BASED VOIP SCHEDULER AT THE EXAMPLE OF IEEE802.16

Hankang Wang, Dirk Staehle, Thomas Bohnert

QoE based VoIP Scheduler

Objective:

Julius-Maximilians

- investigate potential of QoE aware short-term scheduling decisions
- example: downlink of IEEE802.16e with BandAMC (frequency-selective scheduler)

Two-State Model

Idea from

UNIVERS

WÜRZBURG

A. Raake, "Short- and Long-Term Packet Loss Behavior: Towards Speech Quality Prediction for Arbitrary Loss Distributions", *IEEE Transactions on Audio, Speech, and Language Processing, 2006*

Idea of QoE

- Scheduling decisions based on
 - SNR per band
 - waiting delay of packet
 - R-Score
- sort packet-band pairs in scheduling order
 - use different metric

Scheduling Algorithms: Example

Performance of Basic Schedulers

Basic Schedulers:

- Random Scheduler (metric: random value)
- R-Score Scheduler (metric: lowest R-Score first)
- EDF Scheduler (metric: longest waiting time first)
- MaxSNR Scheduler (metric: highest SNR first)

- Scenario
 - 100 mobiles,
 - G711 codec,
 - IEEE802.16e,
 - 5MHz band,
 - packet dropping threshold 100ms,
 - mobile velocity 3km/h
 - ITU PB channel

Performance of Combined Metrics

- Schedulers with combined metrics:
 - LF (linear function) scheduler: $U = \alpha \cdot SNR \beta \cdot Rscore + \gamma \cdot Delay$
 - LZF (linear plus Z function): $U = \alpha \cdot SNR \beta \cdot Rscore + \gamma \cdot ZF(delay)$

Conclusion and Outlook

- Summary:
 - Concept of QoE based resource management
 - Proof of Concept of QoE based dynamic bandwidth control
 - Technology independent implementation
 - QoE ensuring without changes to the MAC layer
 - Realization in a real testbed
 - Demonstration of QoE based VoIP scheduler
 - combines advantages of channel-aware and QoE-aware schedulers
- Outlook:
 - QoE based resource management in mesh networks
 - gateway selection/switching
 - congestion control
 - Make QoE aware scheduler multi-class

Thank you for your attention!

