Adaptive Point-to-Multipoint Transmission for Multimedia Broadcast / Multicast Services in LTE

Mai-Anh Phan Ericsson GmbH, Ericsson Research mai-anh.phan@ericsson.com

Overview

- Multimedia Broadcast / Multicast Service (MBMS)
- Application scenario
- MBMS transmission modes in LTE
- New approach: adaptive PTM
- Optimizations for downlink & uplink
- Link adaptation analysis
- Conclusion

Motivation for Multimedia Broadcast / Multicast Service

- Standardization of Multimedia Broadcast / Multicast Service (MBMS) for UMTS Release 6 in 2005
 - → more efficient delivery of identical multimedia contents to several consumers interested in the same service

MBMS architecture

- New transmission mode:
 - Introduction of point-to-multipoint (PTM) bearers
 - Broadcast on radio interface
- (e)BMSC controls MBMS sessions and corresponding bearers

MBMS opportunities in LTE context

- Conventional single-cell transmission modes for MBMS
 - Point-to-Point (PTP) transmission
 - Dedicated downlink and uplink channels for each user
 - Transport format selection and retransmissions based on individual feedback
 - Classical Point-to-Multipoint (PTM) transmission
 - No feedback
 - Common channel with fixed transport format (TF)
- New approach:
 - Adaptive PTM transmission based on user-individual feedback
 - Group-specific transport format selection
 - Retransmissions based on feedback

Application scenario

Video live streaming (Mobile TV)

- Initial buffering only permits low delay jitter
- Max. delay of 2 seconds
 → limited application-layer coding possible
- User satisfaction rate depends on
 - Video frame error rate (FER) and
 - Buffer underrun
- In this study
 - Source data rate of 128 kbps
 - Frame rate of 12.5 fps
 - Fixed video frame size
 - Tolerated FER = 1%
 - No buffer underrun tolerated

PTP transmission in LTE

- Orthogonal Frequency Division Multiplex (OFDM) technology
 - Allows for frequency-selective scheduling
 - → Requires channel quality indicator reports for each subband (multiband CQI reporting)
 - Basic configuration: periodic measurements and CQI reporting for active users
- Hybrid Automatic Repeat reQuest (HARQ)
 - Status report for decoding result of transport block (TB)
 - Success: ACK
 - Failure: NACK
 - on reception of NACK \rightarrow retransmission by base station
 - Incremental redundancy scheme

Classical PTM transmission mode

- No feedback \rightarrow fixed transport format
- Required coverage (user satisfaction rate): 95 %
- Robust modulation scheme \rightarrow QPSK
- Code rate of 1/12
- Blind retransmissions with effective code rate of 1/12 → time diversity
- Retransmissions based on incremental redundancy including repetitions

Classical PTM: performance evaluation

- Decreased BLER due to gain from increased time diversity
- Reduced number of transport blocks per video frame further decreases FER
- Decreased FER is reflected in user satisfaction rate

Simulation parameters

Network size	7 sites (3-sector hexagonal grid)
Cell radius	500 m
Distance attenuation	29.03 + 3.52 · 10 · log(d) distance d in [m]
Multipath fading	3GPP Typical Urban
Shadow fading	log-normal, σ = 8 dB
Spectrum allocation	5 MHz
eNodeB transmit power	20 W / 13 dBW
Maximum antenna gain	14 dBi
Receiver	Single antenna, no receiver diversity
UE speed	3 km/h
UE CQI reporting period	10 ms
Max. no. of HARQ transmissions	8

Resource allocation in downlink

- PTP transmission
 - \rightarrow dedicated channels for each MBMS user

Resource allocation in downlink

- PTP transmission
 - \rightarrow dedicated channels for each MBMS user
- Classical PTM transmission
 - \rightarrow fixed robust transport format for required coverage

Resource allocation in downlink

- PTP transmission
 - \rightarrow dedicated channel for each MBMS user
- Classical PTM transmission
 - \rightarrow fixed robust transport format for required coverage

Known approach* for HSDPA

- HS-DSCH used for PTM transmission
 - received by all users in the same service group
- Fixed transport format and power
- Number of retransmissions determined by HARQ feedback
- Retransmissions based on chase combining
- Compared to fixed number of 5 transmissions per TB
 - 70 % transmission savings for 2.38 users per group
 - 40 % transmission savings for group size of 23.8 users
- User satisfaction rate: 96-97 %

* V. Vartiainen, J. Kurjenniemi, "Point-to-Multipoint Multimedia Broadcast Multicast Service (MBMS) Performance over HSDPA", in Proc. IEEE Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Athens, Greece, September 2007, pp. 1–5.

Approach for LTE: adaptive PTM

- One common downlink channel (PTM concept)
- Dedicated uplink channels for each MBMS user (PTP concept)
- Periodic channel measurements and CQI reporting from each user for each subband
- Transport format selection determined by worst user → based on lowest CQI value
- ACKs and NACKs from each single user
- Retransmissions until
 - all receivers can decode the packet or
 - maximum number of allowed transmission attempts reached

Resource savings achieved by adaptive PTM

Compared to PTP at least 33% resource savings

Resource savings achieved by adaptive PTM

- Compared to classical PTM
 - 73 % resource savings for group size of 2 users
 - Still 30 % resource savings for more than 20 users

Resource optimization for downlink

- Avoid that worst case user substantially deteriorates performance of whole group using CQI threshold
- Time-domain minimum-CQI scheduling technique (TD min-CQI) :
 - do not schedule while CQI too low
 - CQI threshold: 5th percentile channel quality

Resource optimization for uplink

- NACK-oriented feedback scheme
 - Exclusive NACK scheme instead of combined ACK and NACK syntax
 - NACK-triggered CQI reporting: CQI report only when NACK signal transmitted → actual adaptation phase
 - Recovery phase: reduce robustness of transport format for transmission of new data

Link adaptation analysis

- Adaptive PTM: reduced transmit rate and increased HARQ transmissions for increasing group size
- The NACK-oriented feedback scheme can only slowly adapt to better channel conditions → conservative TF selection
 - \rightarrow Reduced HARQ attempts for increasing group size

User satisfaction rate

- All investigated PTM schemes provide USR >> 95 %
 → In the same range as PTP transmission
- Further resource savings achievable for reduced USR

Conclusion

- Significant improvement for small user groups by adaptive PTM transmission with user satisfaction rate (USR) > 99 %
 - Compared to PTP
 - Minimum downlink power gain of 33 % (\geq 2 users per group)
 - NACK-oriented feedback scheme reduces uplink load
 - Compared to classical PTM (95 % USR)
 - Up to 73 % downlink power gain (for 2 users per group)
- NACK-oriented feedback scheme provides good compromise in both uplink and downlink resource consumption
- Assuming the typical USR of 95 % also for adaptive PTM the gains compared to classical PTM can be even higher

ERICSSON SERICSSON

Drawback of segmentation

$$FER = 1 - (1 - BLER)^{N_{TB}}$$
$$\Rightarrow BLER_{max} = 1 - \sqrt[N_{TB}]{1 - FER}$$

 $N_{\text{TB}} \ldots$ number of transport blocks per video frame

N _{TB}	BLER _{max}
1	0.01
2	0.005
4	0.0025
5	0.0020

Group channel quality

- Group channel quality: channel quality experienced by user of the group with the worst reception conditions
- Normalized SINR: SINR assuming transmit power of 1 Watt