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Crosslayer Design

@ Benefits: copc with random traffic, achiecve multiuser
diversity, and "learn" ergodic capacity region with CSI, 1.¢.
long term supportable rates by employing scheduling.

e Maximum Weight Matching policy [Tassiulas et al "92]
Exponential Rule: [Shakkottal & Stolyar *02]
Queue Proportional, Idle State Prediction
[Seong & Cioffi ’06], [Zhou & Wunder ’07]
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Results

@ We show that a general, comprehensive representation
and universal decomposition of scheduling policies exist.

@ We provide a canonical approach to design throughput-optimal
scheduling policies (helps to solve the long open-standing
problem of delay-optimality).

@ We show that the intrinsic resource allocation problem has
combinatorical nature that can be incorporated "from scratch”.
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System Model
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@ Letn € N be the time slot; the packet arrival process a(n) € RY
is iid with mean rate p := [E(a(»)) and Pr(a(n#) = 0) > O.

@ The rate processr(n) € R+ is iid and r(n) € C(h(n), P(n))
where C(h(n), P(n)) < R is instantanous (discrete) rate region;
h(n) € RY* is vector of channel gains, P(1) € R. is power
budget.
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LTE OFDMA Downlink Channel

Denote backlog as q(77) € R%; by our assumptions the queueing
system cvolves as 6 -irreducible Markov chain:

q(n+1) = [q(n) —r(n) +a(m)]"

Due to OFDM(A) C(h, P) is generated by 1.) exclusive assignment
of subcarrier sets S1,...,Syy < K = {1,...,K} to users and

2.) powers p;,k € K, to subcarriers subject to budget Y, px < P.

Subcarrier rate 7, 1 (/m.1, px) 18 a function of the channel gain and
the power. The achievable rate of user m on subcarrier £ 1s then

Fmi@r(n)) = fhmpe,pr) € {LLEMB,... | Bits]




LTE OFDMA Downlink Channel

@ Hence, the instantanous rate region C(h, P) is a set of discrete
rate points!

@ More general: CP(h) c R¥*! ig the set of rate-power tuples.
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Notion of Stability

Definition 1
The queueing system is f-stable if there is a function 4 RY — R,
which 1s unbounded in any direction and 1t holds: fla) < B

lim supE( f{q(n)) ) < 4+ g )
Nn—+00 Q) < B
Choosing f(q) = ||q||, where ||+|| 1s any vector norm, .

queueing system 1s strongly stable.

1

Definition 2

A policy 1s throughput-optimal, 1f 1t keeps the system f-stable
for any arrival rate vector p €int(C.¢(P)), 1.€. in the interior
of the ergodic capacity region (it is not possible to stabilize
the system outside this region!).



Scheduling Policies

Definition =

A scheduling policy P is a mapping from the current queue state
q(n) and channel state h(7) to the set of ratesr € C(h, P).
Denote this mapping by r” (-, ») we define the rate allocation

here as:

r”(h,q) =argmax (u”(h,q))" « ¥
reC(h,P).r>1r

i.) n”(h,q) € RY is a policy-specific weight vector which
(,,gencralized weight matching”) might depend both on
queue and channel state.

ii.) Obviously: r”(h,q) € bd(C(h,P)").

iil.) F are mimimum rate constraints for ¢.g. H-ARQ users.



Scheduling examples
@ Maximum weight matching (MWM) scheduling: p”(q) = q.

@ Qucuc Proportional (QP) scheduling
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Decomposition

Theorem 1

If ||q|| 1s sufficiently large, then the following is true:

i.) Any throughput-optimal policy almost surely allocates a
rate point on bd(C(h,P)"),iec., generalized weight matching”
1s optimal.

ii.) The mapping p” (h, q) which characterizes a throughput-
optimal scheduling policy 1s independent of the current
channel state h.




Universal Decomposition

MAC LAYER

p:RE S RY :qo p(q)

pa AN
Weight match\iggéld appropriate Resso“l‘cexl%aﬁon: solve
vector-valued mapping: r —argmax p’F

reC(h,P), T
for given p and rate/power
constraints F/P.

When is a weight matching

Can we solve the optimization

policy throughput-optimnal? problem efficiently?
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Curl-free
Scheduling fields



Main Theorem

@ First of all, observe that 1i1(q), it2(q), .. ., itar(q) defines an
M-dimensional vector (scheduling) field.

92,
—
@ Without loss of generality, the weight vector y g :’T)
can be normalized: i %ﬂ”
() — M@ 27 F @
T T ;

>
#1(q) qi

@ Note that not all policies are feasible! Counterexample: E . g.

the function u;(q;) = e? is not feasible (only known by simulations
so far but we have shown 1n our recent paper).

So, what 1s the common of all policies such as MWM, QP etc.?
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The Main Theorem

Main Theore

The scheduling policy P 1s throughput-optimal, 1f the mapping
" fulfills the following two conditions:

i.) Let [[Aq|| < Cj, then:
lim ﬁm(q + A(I) = lim ﬁm(q)

| q |-+, any path in RY Ilq [|->+o0

ii.) Let g, < (>, then:

lim nn(q) =0
lqll>+0, any path in RY.¢m<C>



Main Theorem: Interpretation

@ If ||q| becomes large, the weight vector varies smoothly
between two time slots.

o If |q| becomes large, no rate is wasted on "nonurgent"
users.

s Queue
state q

(q)

r
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Main Theorem: Proof Sketch

@ Suppose that there are unbounded functions V(q),Aq): RY - R,
so that:

L - gy

o Ifso ii(q) must satisfy the conditions of the Poincaré Lemma,

i.e. j1(q) 1s a continuous, totally integrable function, ¢.g. in
3 dimensions:

> (Vxjuq)) = curl(fi(q)) = 0

All line integrals along lines are zero:
a curl-free scheduling field!




Main Theorem: Proof Idea

@ The first part of the proof shows: 1f i 1s integrable then for
some constants 6, B > 0 the so-called Lyapunov drift becomes:

E(V(q(n+ 1)) = Va@))lq(n)) < -6f(q),

Viql> B
This implies: The Markov chain 1s f-stable [see e.g. Meyn 1992].

@ BUT, cven MWM scheduling does not fulfill Poincar¢’s Lemmal!

@ Hence, in the second part we show: if ji(q) fulfills the condition
of the theorem it can be arbitralily closely approximated by some
integrable function constructed as follows:



Main Theorem: Proof Sketch

Fhrep Virdt egrable icoldpenation ésafqrethestaldhg grid lines ...

Q2 N ........ AQl. ........

q1
Finally, it is shown that the difference between continuation
and original scheduling becomes arbitrarily small.



Resource Allocation

Reca”: Ressource Allocation: solve
r —argmax p’-F
TeC(hP), T

for given 1 and rate/power
constraints F/P.




Resource Allocation

Obviously: Resource allocation problem 1s combinatorial problem
in Sy,...,Sy: brute force prohibitive when K 1s large!

Trick: Solution is forced to lic on bd(CP(h)"); introducing
power prize A €R, and user revenues 1i,,€ R the
maximization problem can be written as:

pequE}X Z(Jum + Jum) Z V' k(Pk) A Zpk
T m=1 keS,,

Here, A and 1, ensure that:

Zpk < P, Zrmk(pk) > 7w VM

kEL m

for some given power budget P and rate constraints 7, V.



Resource Allocation

@ Observation: The problem decouples into K independent
problems even for the our combinatorial problem.

o Idea: Find smallest possible A, 11, such that constraints are
fulfilled.

@ This opens up an efficient way to solve the combinatorical
problem by viewing it as a (non-standard) "ressource
allocation game".



Resource Allocation

7

are fixed! 7 ?\
M + 1 players resource allocatigh game: % /\ %
\:t|on /\

i
Player 1: miny; s. computatlon

Player 2: minu, st. >, 77" 7 > 772
. ]
: @ates!

Asy nchronous

Rate of user 1 when all other weights %

Player M: min ), s.t. Zkr(luf“ 0 >

Power Player M + 1: min(—A1) s.t. kak > P
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Resource Allocation

Theorem 2

The outcome can be characterized as follows:

The sequence p™, 1) generated with asynchronous updates
of this ressource allocation game converges to a smallest
(Pareto-optimal) solution p* such that the rate constraints
are satisfied.

Note: Proof is based on formulating the update rule as an
operator which carries, interestingly, properties of an
interference function [Yates 95].



Resource Allocation

e Number of users : 5, 1000 channel runs
e Number of subcarriers : 256
e wn=][0.1,0.1,0.2,0.2,0.4]
e Min. Rate constraint: [3, 3, 2, 1, 0]
ol _L”J?iii”jtgo”lljf?igf;ﬁile”tEf e 95} _L”J?&L”SZ”JJEESTJJ:Z’!:E? e

Note: 3dB loss in average compared to standard utility
optimization!



Conclusions with Outlook:

We have presented a invaluable example of applying successfully
queuing-, information- and optimization theory to solve a fundamental
problem.

Research 1s only the beginning: What about:
1.) non-ergodic processes ii.) past-dependent policies
111.) non-cooperative scheduling 1n multicell scenarios

We want emphasize two cases:
- MIMO: Even per subcarrier computation is infeasible
(new patent filed, graph theoretic approaches!)
- Networks: MWM appears naturally in networks with flow control;
framework can be applied?
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