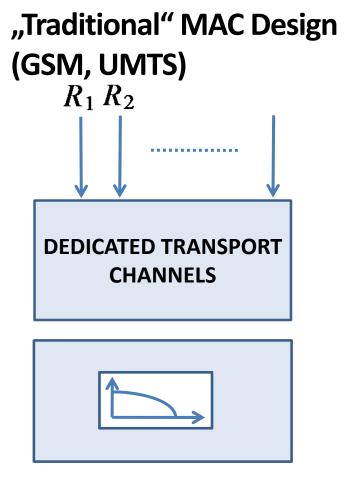
Curl-free Scheduling Fields: A Fundamental Characterization of Stability in Wireless Networks

Gerhard Wunder

ITG Fachgruppentreffen Aachen Feb. 12th 2008

Joint Work with Z. Chan (PhD Cand.) and Thomas Michel (PhD)

Crosslayer Design Mobile Commun. Networks



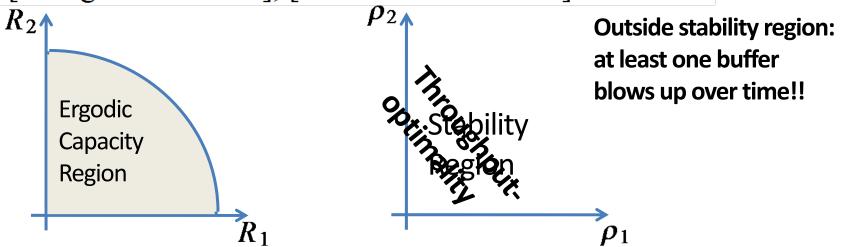
Rate Region without CSI

"State of the art" MAC Design (HSDPA, LTE) $\rho_1 \rho_2$ **BUFFERING AND SCHEDULING: SHARED CHANNEL**

Rate Region with CSI

Crosslayer Design

- Benefits: cope with random traffic, achieve multiuser diversity, and "learn" ergodic capacity region with CSI, i.e. long term supportable rates by employing scheduling.
- Maximum Weight Matching policy [Tassiulas et al '92] Exponential Rule: [Shakkottai & Stolyar '02] Queue Proportional, Idle State Prediction [Seong & Cioffi '06], [Zhou & Wunder '07]



Results

- We show that a general, comprehensive representation and universal decomposition of scheduling policies exist.
- We provide a canonical approach to design throughput-optimal scheduling policies (helps to solve the long open-standing problem of delay-optimality).
- We show that the **intrinsic resource allocation problem** has combinatorical nature that can be incorporated "from scratch".

Content

- System model and decomposition
- Curl-free scheduling fields
- Ressource allocation
- Outlook and coclusions

System Model and Decomposition

System Model

Queue state state User 1
User 2
User 3
OFDM(A) channel:

Base station: *M* users

- Let $n \in \mathbb{N}$ be the time slot; the packet arrival process $\mathbf{a}(n) \in \mathbb{R}_+^M$ is **iid** with mean rate $\boldsymbol{\rho} := \mathbb{E}(\mathbf{a}(n))$ and $\Pr(\mathbf{a}(n) = 0) > 0$.
- The rate process $\mathbf{r}(n) \in \mathbb{R}_+^M$ is iid and $\mathbf{r}(n) \in \mathcal{C}(\mathbf{h}(n), P(n))$ where $\mathcal{C}(\mathbf{h}(n), P(n)) \subset \mathbb{R}_+^M$ is instantanous (discrete) rate region; $\mathbf{h}(n) \in \mathbb{R}_+^{MK}$ is vector of channel gains, $P(n) \in \mathbb{R}_+$ is power budget.

LTE OFDMA Downlink Channel

Denote backlog as $\mathbf{q}(n) \in \mathbb{R}_+^M$; by our assumptions the queueing system evolves as δ_0 -irreducible Markov chain:

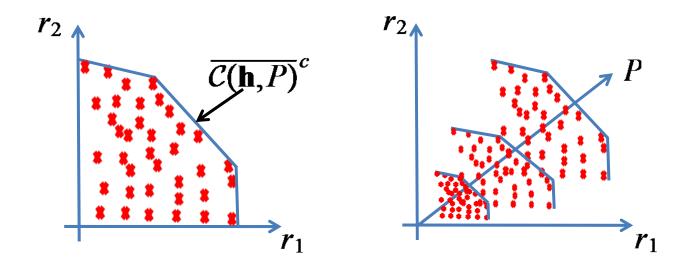
$$\mathbf{q}(n+1) = [\mathbf{q}(n) - \mathbf{r}(n) + \mathbf{a}(n)]^{+}$$

- Due to OFDM(A) $C(\mathbf{h}, P)$ is generated by 1.) **exclusive** assignment of **subcarrier sets** $S_1, \dots, S_M \subset \mathcal{K} := \{1, \dots, K\}$ to users and 2.) **powers** $p_k, k \in \mathcal{K}$, to subcarriers subject to budget $\sum_k p_k \leq P$.
- Subcarrier rate $r_{m,k}(h_{m,k}, p_k)$ is a function of the channel gain and the power. The achievable rate of user m on subcarrier k is then

$$r_{m,k}(p_k(n)) = f(h_{m,k},p_k) \in \{1,2,3,\dots\}[Bits]$$

LTE OFDMA Downlink Channel

- Hence, the instantanous rate region $C(\mathbf{h}, P)$ is a set of **discrete** rate points!
- **More general**: $\mathcal{CP}(\mathbf{h}) \subset \mathbb{R}^{M+1}_+$ is the set of rate-power tuples.



Notion of Stability

Definition 1

The queueing system is **f-stable** if there is a function $f^* \uparrow \mathbb{R}^M_+ \to \mathbb{R}_+$ which is unbounded in any direction and it holds:

$$\lim_{n\to+\infty} \mathbb{E}(f(\mathbf{q}(n))) < +\infty$$

 $f(\mathbf{q}) \leq B_2$

 $f(\mathbf{q}) \leq B_1$

Choosing $f(\mathbf{q}) = \|\mathbf{q}\|$, where $\|\cdot\|$ is any vector norm, the queueing system is strongly stable.

Definition 2

A policy is **throughput-optimal**, if it keeps the system f-stable for any arrival rate vector $\rho \in \operatorname{int}(\mathcal{C}_{erg}(P))$, i.e. in the **interior** of the ergodic capacity region (it is not possible to stabilize the system outside this region!).

Scheduling Policies

Definition 3

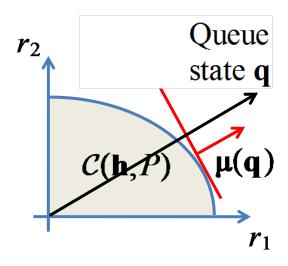
A scheduling policy \mathcal{P} is a mapping from the current queue state $\mathbf{q}(n)$ and channel state $\mathbf{h}(n)$ to the set of rates $\mathbf{r} \in \mathcal{C}(\mathbf{h}, P)$. Denote this mapping by $\mathbf{r}^{\mathcal{P}}(\cdot, \cdot)$ we define the rate allocation here as:

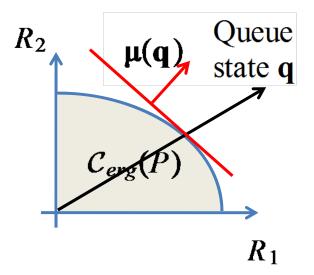
$$\mathbf{r}^{\mathcal{P}}(\mathbf{h}, \mathbf{q}) = \underset{\tilde{\mathbf{r}} \in \mathcal{C}(\mathbf{h}, P), \tilde{\mathbf{r}} \geq \bar{\mathbf{r}}}{\operatorname{arg max}} (\boldsymbol{\mu}^{\mathcal{P}}(\mathbf{h}, \mathbf{q}))^{T} \cdot \tilde{\mathbf{r}}$$

- i.) $\mu^{\mathcal{P}}(\mathbf{h}, \mathbf{q}) \in \mathbb{R}_{+}^{M}$ is a policy-specific weight vector which ("generalized weight matching") might depend **both on queue and channel state**.
- ii.) Obviously: $\mathbf{r}^{\mathcal{P}}(\mathbf{h}, \mathbf{q}) \in \mathrm{bd}(\overline{\mathcal{C}(\mathbf{h}, P)}^{c})$.
- iii.) **r** are minimum rate constraints for e.g. **H-ARQ users**.

Scheduling examples

- Maximum weight matching (MWM) scheduling: $\mu^{\mathcal{P}}(\mathbf{q}) = \mathbf{q}$.
- Queue Proportional (QP) scheduling





Decomposition

Theorem 1

If $\|\mathbf{q}\|$ is sufficiently large, then the following is true:

- i.) Any **throughput-optimal** policy **almost surely** allocates a rate point on $bd(\overline{\mathcal{C}(\mathbf{h}, P)}^c)$, i.e. "generalized weight matching" is optimal.
- ii.) The mapping $\mu^{\mathcal{P}}(\mathbf{h}, \mathbf{q})$ which characterizes a throughput-optimal scheduling policy is **independent** of the current channel state \mathbf{h} .

Universal Decomposition

MAC LAYER

Weight matching. find appropriate vector-valued mapping:

$$\mu: \mathbb{R}^{M+1}_+ \to \mathbb{R}^M_+: \mathbf{q} \hookrightarrow \mu(\mathbf{q})$$

When is a weight matching policy throughput-optimnal?

Ressource Allocation: solve

 $\mathbf{r} = \arg\max_{\tilde{\mathbf{r}} \in \mathcal{C}(\mathbf{h}, P), \tilde{\mathbf{r}} \geq \tilde{\mathbf{r}}} \boldsymbol{\mu}^T \cdot \tilde{\mathbf{r}}$

for given μ and rate/power constraints $\bar{\mathbf{r}}/P$.

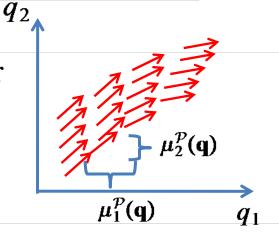
Can we solve the optimization problem efficiently?

Curl-free Scheduling fields

Main Theorem

- First of all, observe that $\bar{\mu}_1(\mathbf{q}), \bar{\mu}_2(\mathbf{q}), \dots, \bar{\mu}_M(\mathbf{q})$ defines an M-dimensional vector (scheduling) field.
- Without loss of generality, the weight vector can be normalized:

$$\mathbf{\bar{\mu}}^{\mathcal{P}}(\mathbf{q}) := \frac{\mathbf{\mu}^{\mathcal{P}}(\mathbf{q})}{\|\mathbf{\mu}^{\mathcal{P}}(\mathbf{q})\|_{1}}$$



- Note that not all policies are feasible! Counterexample: E.g. the function $\mu_i(q_i) = e^{q_i}$ is not feasible (only known by simulations so far but we have shown in our recent paper).
 - So, what is the common of all policies such as MWM, QP etc.?

The Main Theorem

Main Theorem

The scheduling policy \mathcal{P} is throughput-optimal, if the mapping $\bar{\mu}^{\mathcal{P}}$ fulfills the following two conditions:

i.) Let $\|\Delta \mathbf{q}\| \leq C_1$, then:

$$\lim_{\|\mathbf{q}\|\to+\infty, \text{ any path in } \mathbb{R}^M_+} \bar{\mu}_m(\mathbf{q}+\Delta\mathbf{q}) = \lim_{\|\mathbf{q}\|\to+\infty} \bar{\mu}_m(\mathbf{q})$$

ii.) Let $q_m \leq C_2$, then:

$$\lim_{\|\mathbf{q}\| o +\infty, \text{ any path in } \mathbb{R}^M_+, q_{m \leq} C_2} \bar{\mu}_m(\mathbf{q}) = 0$$

Main Theorem: Interpretation

- If $\|\mathbf{q}\|$ becomes large, the weight vector varies smoothly between two time slots.
- If $\|\mathbf{q}\|$ becomes large, no rate is wasted on "nonurgent" users.

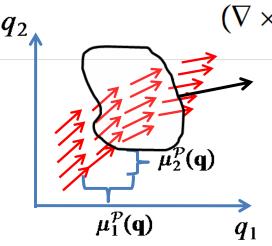


Main Theorem: Proof Sketch

Suppose that there are unbounded functions $V(\mathbf{q}), f(\mathbf{q}) : \mathbb{R}_+^M \to \mathbb{R}_+$ so that:

$$\frac{\partial V(\mathbf{q})}{\partial q_i} = f(\mathbf{q})\bar{\mu}_i(\mathbf{q})$$

If so $\bar{\mu}(\mathbf{q})$ must satisfy the conditions of the Poincaré Lemma, i.e. $\bar{\mu}(\mathbf{q})$ is a continuous, totally integrable function, e.g. in 3 dimensions:



 $(\nabla \times \bar{\mu}(q)) = \operatorname{curl}(\bar{\mu}(q)) = 0$

All line integrals along lines are zero: a curl-free scheduling field!

Main Theorem: Proof Idea

The first part of the proof shows: if $\bar{\mu}$ is integrable then for some constants $\theta, B > 0$ the so-called **Lyapunov drift** becomes:

$$\mathbf{E}(V(\mathbf{q}(n+1)) - V(\mathbf{q}(n))|\mathbf{q}(n)) \le -\theta f(\mathbf{q}),$$
$$\forall \|\mathbf{q}\| > B$$

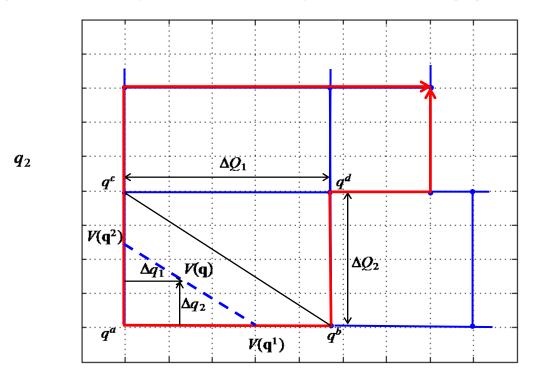
This implies: The Markov chain is *f*-stable [see e.g. Meyn 1992].

• BUT, even MWM scheduling does not fulfill Poincaré's Lemma!!

• Hence, in the second part we show: if $\bar{\mu}(q)$ fulfills the condition of the theorem it can be arbitralily closely approximated by some integrable function constructed as follows:

Main Theorem: Proof Sketch

Fhreth, viret egreable i cooletpie una bié onc és cofoprat lines telob hg grid lines



Finally, it is shown that the difference between continuation and original scheduling becomes arbitrarily small.

Recall: Ressource Allocation: solve $\mathbf{r} = \arg\max_{\mathbf{r} \in \mathcal{C}(\mathbf{h}, P), \mathbf{\tilde{r}} \geq \mathbf{\tilde{r}}} \mathbf{r}$ for given $\mathbf{\mu}$ and rate/power constraints $\mathbf{\tilde{r}}/P$.

- **Obviously**: Resource allocation problem is combinatorial problem in $S_1, ..., S_M$: brute force prohibitive when K is large!
- Trick: Solution is forced to lie on $\mathrm{bd}(\overline{\mathcal{CP}(\mathbf{h})}^c)$; introducing power prize $\lambda \in \mathbb{R}_+$ and user revenues $\mu'_m \in \mathbb{R}_+$ the maximization problem can be written as:

$$\max_{\mathbf{p} \in \mathbb{R}_+^K, \mathcal{S}_1, \dots, \mathcal{S}_M} \sum_{m=1}^M (\mu_m' + \mu_m) \sum_{k \in \mathcal{S}_m} r_{m,k}(p_k) - \lambda \sum_{k=1}^K p_k$$

• Here, λ and μ'_m ensure that:

$$\sum_{k=1}^{K} p_k \leq P, \quad \sum_{k \in \mathcal{S}_m} r_{m,k}(p_k) \geq \bar{r}_m \ \forall m$$

for some given power budget P and rate constraints \bar{r}_m , $\forall m$.

- **Observation**: The problem **decouples** into *K* independent problems even for the our combinatorial problem.
- Idea: Find smallest possible λ , μ'_m such that constraints are fulfilled.
- This opens up an efficient way to solve the combinatorical problem by viewing it as a (non-standard) "ressource allocation game".

Rate of user 1 when all other weights are fixed!

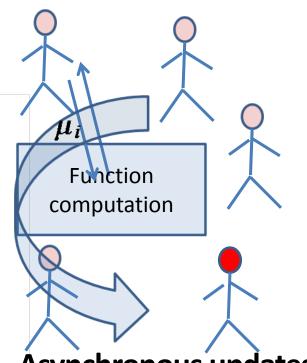
M+1 players resource allocation game:

Player 1:
$$\min \mu'_1$$
 s.t. $\sum_{k} r_{1,k}^{(\mu'_1, \mu'_{-1})} \ge \bar{r}_1$
Player 2: $\min \mu'_2$ s.t. $\sum_{k} r_{2,k}^{(\mu'_1, \mu'_{-1})} \ge \bar{r}_2$

Player 2: min
$$\mu'_2$$
 s.t. $\sum_{k} r_{2,k}^{(\mu_2,\mu_{-2})} \ge \bar{r}_2$

Player M: $\min \mu'_M$ s.t. $\sum_k r_{1,k}^{(\mu'_M,\mu'_{-M})} \geq \bar{r}_1$

Power Player M+1: $\min(-\lambda)$ s.t. $\sum_{k} p_{k} \geq \bar{P}$



Asynchronous updates!

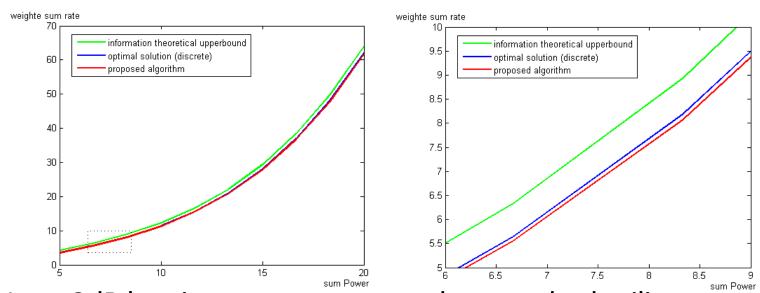
Theorem 2

The outcome can be characterized as follows:

The sequence $\mu^{(n)}$, $\lambda^{(n)}$ generated with asynchronous updates of this ressource allocation game converges to a **smallest** (Pareto-optimal) solution μ^* such that the rate constraints are satisfied.

Note: Proof is based on formulating the update rule as an operator which carries, interestingly, properties of an interference function [Yates 95].

- Number of users: 5, 1000 channel runs
- Number of subcarriers: 256
- $\mu = [0.1, 0.1, 0.2, 0.2, 0.4]$
- Min. Rate constraint: [3, 3, 2, 1, 0]



Note: 3dB loss in average compared to standard utility optimization!

Conclusions with Outlook:

We have presented a invaluable example of applying successfully queuing-, information- and optimization theory to solve a fundamental problem.

Research is only the beginning: What about:

- i.) non-ergodic processes ii.) past-dependent policies
- iii.) non-cooperative scheduling in multicell scenarios

We want emphasize two cases:

- MIMO: Even per subcarrier computation is infeasible (new patent filed, graph theoretic approaches!)
- Networks: MWM appears naturally in networks with flow control; framework can be applied?