

Joint Routing and Power Allocation for IDMA Applied in Multi-Hop Wireless Networks

Hendrik Schöneich, Armin Dekorsy Qualcomm CDMA Technologies GmbH

Hollswood Update

75 7pm Nevs is Hoarly Nevs 35 Weather Nevs

Today's Highligh D 2XP US Rock Top 10 Pa

- Mesh networks gain increasing interest with a multitude of possible applications like
 - wireless meshed "backhaul" networks
 - machine to machine communication (M2M)
- Interleave-Division Multiple Access (IDMA)
 - can be seen as a new interpretation of the core idea of CDMA
 - is capacity-achieving
 - has the potential to increase physical layer efficiency in practical systems

New aspects

- Application of IDMA in mesh networks
- First time the IDMA concept is explicitly considered in a joint routing and power allocation problem

- Goal: Efficiently find a solution to
 - transmit data from source nodes to receiver nodes (multiple unicast sessions)
 - minimize overall power while meeting QoS constraints
 - guarantee a maximum delay

Subquestions

- How to distribute data across edges at nodes?
- Which transmission paths to take?
- When to transmit which data with what power at which node? And how?

- Goal: Efficiently find a solution to
 - transmit data from source nodes to receiver nodes (multiple unicast sessions)
 - minimize overall power while meeting QoS constraints
 - guarantee a maximum delay

Subquestions

- How to distribute data across edges at nodes?
- Which transmission paths to take?
- When to transmit which data with what power at which node? And how?

- Link capacities are not fixed and are influenced by resources of interfering links
- Adjustment of capacities by resource allocation such as scheduling and power allocation
- Need for integrated routing, scheduling, and power control strategy

Signal-to-interference-plus-noise ratio (SINR)

$$SINR_{e,t} = \frac{G_t(T(e), R(e)) \cdot p_{e,t}}{\sum\limits_{\substack{l \in E_{e,t} \\ l \neq e}} G_t(T(l), R(e)) \cdot p_{l,t} + \sigma_e^2}$$
(1)

• Maximum mutual information that can on average be transmitted within time duration τ over a bandwidth B is given by the capacity $C_G(\mathbf{p}) = B \tau \log_2 (1 + \mathrm{SINR}_{e,t})$

SRPC problem

minimize
$$f(\mathbf{p}, \mathbf{b}, \mathbf{c})$$

subject to $(\mathbf{b}, \mathbf{c}) \in \mathcal{C}_c$,
 $\mathbf{p} \in \mathcal{C}_p$, (2)

$$\sum_{m \in \mathcal{M}} c_{e,m,t} \leq R_{e,t}(\mathbf{p}) \leq \mathcal{C}_G(\mathbf{p})$$

$$(e \in E^+(v), t \in T).$$

- \bullet C_p and C_c contain communication and flow constraints
- At any time $t \in T$ each node $v \in V$ can map all part of messages $m \in M$ onto a single link $e \in E$ for transmission
- Coupling constraints are the only coupling between network flow variables (b, c) and communication variables p

- If f is strictly monotone in \mathbf{p} then all coupling constraints are active at each optimum solution of the SRPC problem (2) in \mathbf{p} , i.e., $\sum_{m \in M} c_{e,m,t} = R_{e,t}(\mathbf{p}^*)$
- As shown later, with IDMA we obtain the important property that

$$\sum_{m \in M} c_{e,m,t} = R_{e,t} \left(\mathbf{p}^* \right) = C_G \left(\mathbf{p}^* \right), \tag{3}$$

i.e., the coupling constraints in the SRPC problem (2) are fulfilled with equality for IDMA

Motivation for RPCD

Use these both properties to find a problem equivalent to the SRPC problem, which can be solved by an algorithm with very low computational complexity

Equivalent SRPC Problem

minimize
$$f(J(p,c),c,b)$$
 (4)
subject to $p \in C_p$,
 $(b,c) \in C_c$,
 $p \succeq J(p,c)$.

with standard interference function

$$J_{e,t}\left(\mathbf{p},\mathbf{c}\right) := \frac{2^{\left(\frac{\sum\limits_{m \in M} c_{e,m,t}}{B\tau}\right)} - 1}{G_{t}\left(T\left(e\right),R\left(e\right)\right)} \cdot \left(\sum_{\substack{l \in E_{e,t} \\ l \neq e}} G_{t}\left(T\left(l\right),R\left(e\right)\right) \cdot p_{l,t} + \sigma_{e}^{2}\right)$$

$$(5)$$

RPCD Algorithm

- Combinatorial structure of equivalent SRPC problem allows for formulation as two sub-problems:
 - Fix power variables (link capacities) and formulate a flow problem with primal flow variables
 - ② Fix flow variables and formulate a power control problem with primal power variables

- Combinatorial structure of equivalent SRPC problem allows for formulation as two sub-problems:
 - Fix power variables (link capacities) and formulate a flow problem with primal flow variables
 - ② Fix flow variables and formulate a power control problem with primal power variables

Fixed power variables

minimize
$$f(J(\hat{\mathbf{p}}, \mathbf{c}), \mathbf{c}, \mathbf{b})$$
 (6) subject to $(\mathbf{b}, \mathbf{c}) \in C_c$, $\hat{\mathbf{p}} \succ J(\hat{\mathbf{p}}, \mathbf{c})$.

- Objective of this problem strictly convex in c
- Solution unique and depends continuously on $\hat{\boldsymbol{p}}$

- Combinatorial structure of equivalent SRPC problem allows for formulation as two sub-problems:
 - (1) Fix power variables (link capacities) and formulate a flow problem with primal flow variables
 - 2 Fix flow variables and formulate a power control problem with primal power variables

Fixed flow variables

minimize
$$f\left(\mathbf{p},\hat{\mathbf{c}},\hat{\mathbf{b}}\right)$$
 (7)
subject to $\mathbf{p} \in C_p$, (8)
 $\mathbf{p} \succeq \mathbf{J}\left(\mathbf{p},\hat{\mathbf{c}}\right)$.

ullet Solution unique and depends continously on $\left(\hat{\mathbf{b}},\hat{\mathbf{c}}
ight)$

- ullet Data transmission over edge e and time slot t
- Split amount of data $\sum_{m} c_{e,m,t}$ into L_e data sequences $\mathbf{d}_{e,1} \dots \mathbf{d}_{e,L_e}$ of equal length
- Transmit data sequences simultaneously with different interleavers and powers
- Channel encoder may be the same for all data sequences

• Transmit signal \mathbf{x}_e with sum power $p_{e,t} = \sum_{l=1}^{L_e} p_{e,t}(l)$

Multiple access with L_e virtual users ("layers")

• IDMA is capacity-achieving solely by properly allocating the power values $p_{e,t}(I)$, $I=1...L_e$

Optimum power allocation

Assuming stripping decoding, each power value $p_{e,t}(l)$, $l=1...L_e$ has to follow a distribution given by

$$p_{e,t}(I) = (1+\chi)^{L_e-I} \cdot \chi \cdot \frac{p_{e,t}}{\mathsf{SINR}_{e,t}}$$
(9)

with constant

$$\chi = \sqrt[L_e]{\mathsf{SINR}_{e,t} + 1} - 1. \tag{10}$$

• Power allocations along [1,2,6,10] path

$\sum_{m} c_{e,m,t}$	$p_{e,t}$	Le	$p_{e,t}\left(1\right)$	$p_{e,t}\left(L_{e}\right)$
1.4 Mbit	0.03 W	14	3.2348 mW	1.3137 mW
1.1 Mbit	0.02 W	11	2.5106 mW	1.2553 mW
1.1 Mbit	0.1 W	11	12.5528 mW	6.2764 mW

- Algorithmic solution taking explicitely into account
 - information-theoretical properties of the underlying IDMA scheme of virtual users
 - the resulting combinatorial structure of the overall problem
- Solution offers
 - fast convergence to an optimum solution
 - robust capacity-achieving transmission in each link of a given network

- Multiple messages/multiple sources: Each source can transmit multiple messages to different destinations
- Multiple path routing: Each node can send different data to many nodes and receive data from many resources - no multicast, no broadcast
- Single frequency network
- Transmission organized in equal size time slots (scheduling)
- Point-to-point transmission: No relaying, but decoding & forwarding at intermediate nodes
- Channel state information at transmitting nodes (enables resource/power allocation)

- Objective to minimize a convex cost function $f(\mathbf{p}, \mathbf{c}, \mathbf{b})$ (or to maximize a concave utility function)
- Design variables \mathbf{b} , \mathbf{c} and \mathbf{p} are subject to constraints
- Polyhedral sets defined by communication and flow constraints

$$0 \leq p_{e,t} \leq P_e^{\mathsf{max}} \tag{11}$$

$$0 \leq p_{e,t} \leq P_e^{\mathsf{max}}$$

$$\sum_{e \in E^+(v)} p_{e,t} \leq P_v^{\mathsf{max}}$$
(11)

Polyhedral set C_c fulfills flow constraints

$$c_{e,m,t} \geq 0 \tag{13}$$

$$0 \leq b_{\nu,m,t} \leq B_{\nu,m} \tag{14}$$

$$b_{s_m,m,1} = S_m$$
 , $b_{v,m,1} = 0$ $(v \in V \setminus \{s_m\})$ (15)

$$b_{d_m,m,t^{\max}} = S_m \qquad (m \in M \setminus M_V) \tag{16}$$

$$c_{e,m,t} = 0 \quad (co_E(e) \neq co_T(t))$$
 (17)

$$b_{v,m,t+1} - b_{v,m,t} = \sum_{e \in E^{-}(v)} c_{e,m,t} - \sum_{e \in E^{+}(v)} c_{e,m,t} \qquad (18)$$
$$(v \in V \setminus \{d_m\}, t \in T \setminus \{t^{\text{max}}\},$$
$$m \in M, e \in E, v \in V, t \in T)$$