ITG: Informationstechnische Gesellschaft im VDE VDE: Verband der Elektrotechnik Elektronik Informationstechnik e.V.

Motto: Wireless Mesh and Relay Networks

Self-Organized Scheduling over IEEE802.16 Multi-Hop Relay

Haruki Izumikawa Universität Bremen, TZI / KDDI

- Performance Evaluation

Background

•We have started to study IEEE802.16-based multihop system since around 2004, and cooperated in chartering IEEE802.16's Mobile Multihop Relay (MMR) Study Group (currently 802.16j) realizing to:

- expand the service area
- reduce the number of dead spots
- enhance throughput

Ι**Ζ**Ι

by introducing RS (Relay Station) between BS and MS.

Scheduling algorithm with Interference Mitigation/Capacity enhancement

Problem Statement •QoS can be guaranteed even for the MS attached to the RS??

 The radio resource can be used efficiently over 16j??
 -- if BS and RS simply take turns to use the resource, the utilization becomes low.

- The proposal here is a <u>scheduling mechanism</u> that supports:
 - -- <u>OoS</u> (delay and bandwidth) guarantee for all MS (incl. under RS)
 - -- improvement of the radio <u>resource utilization</u> efficiency (i.e., Capacity enhancement)

NOTE: In this proposal, Non-transparent RS system with Centralized scheduling in 16j is assumed.

Scheduling is outside the scope of the standardization.

QoS Guarantee

•QoS can be guaranteed even for the MS attached to the RS??

ΤZi

*BS and RS shares same freq band.

It is necessary to improve the utilization of radio resource over 16j system.

Mitigation/Capacity enhancement

Scheduling considering QoS

Τ**Ζ**Ι

BS creates queues based on hop(s) as well as service classes

Scheduling for Capacity Enhancement

TZi

BS Allows simultaneous transmission to/from several stations if possible.

* BS collects the interference information using MOB_SCN_REQ/REP message from MSs (and RSs as well).

* BS maintains the information in a management table that includes the MS-ID, point of attachment of the MS and interferers.

* When BS schedules the transmission, BS checks the management table and schedules some packets at the same timing as already scheduled timing for another packet unless interference occurs.

Scheduling for Capacity Enhancement

•The scheduling can be completely performed in a self-organized manner

TZi

•The scheduling improves the radio resource utilization to schedule some TX/RX pair at the same timing not to occur interference to refer the management table.

Scheduling algorithm with Interference Mitigation/Capacity enhancement

Evaluation for QoS

TZi

Simulation parameters		QoS	UGS	
Simulator	ns-2 (Ver. 2.27)	parameters	Guaranteed Rate	1.3 Mbps
System	IEEE 802.16-2004 base		Latency	< 50 msec
PHY	OFDM		rtPS	
Frequency	2.5 GHz		Guaranteed Rate	1.0 Mbps
Channel bandwidth	10 MHz		Latency	< 150 msec
FFT size	256		nrtPS	
	200		Guaranteed Rate	500 Kbps
Dupicking	BS-RS: Free space		Latency	N/A
Propagation model	BS/RS- SS: Okumura-Hata		<u>BE</u>	
ANT height	30 m (BS, RS)		Guaranteed Rate	N/A
	1.5m (SS)		Latency	N/A
Mod. and coding rate	16QAM (3/4)			
Offered traffic type	CBR/UDP	Topology		((o))
Packet size	1000 Byte			
	UGS: 1.3 Mbps	\sim		$\mathbf{U} \geq$
Offered traffic rate	rtPS: 2.8 Mbps		I BS	RS
(Downlink traffic)	nrtPS: 2.8Mbps			
	BE: 4.7 MDPS	MSO		MS1

Evaluation for Capacity Enhancement 1

Simulation parameters

TZi

Simulator	ns-2 (Ver. 2.27)	
System	IEEE 802.16-2004 base	
РНҮ	OFDM	
Frequency	2.5 GHz	
Channel bandwidth	10 MHz	
FFT size	256	
Duplexing	TDD	
Propagation model	BS-RS: Free space BS/RS- SS: Okumura-Hata	
ANT height	30 m (BS, RS) 1.5m (SS)	
Mod. and coding rate	Varied	
Offered traffic type	CBR/UDP *1	
Packet size	1000 Byte	

*1: All flows belong to a same class simply to evaluate capacity.

Offered traffic

Time (sec)	Offered load	Dst
30 ~ 70	2.8 Mbps	MS0
40 ~ 70	2.8 Mbps	MS0
50 ~ 70	2.8 Mbps	MS1
60 ~ 70	2.8 Mbps	MS1

Simulation Result -latency-

Existing scheme

TZi

Proposed scheme

Latency is also reduced.

Evaluation for Capacity Enhancement 2

Simulation Result

TZi

The proposed scheme enhances capacity.

Conclusion

Γ**Ζ**Ι

Proposed scheduling scheme is...
able to assure QoS for MSs under RS just as for direct-connected MSs
able to improve the system capacity
able to reduce the latency
self organized
in IEEE802.16 based Relay system.

Vielen Dank für Ihre Aufmerksamkeit.

TZi