

Corporate Technology

Status of IEEE 802.11s

WLAN Mesh Networking Task Group

Michael Bahr Siemens AG, CT IC 2

ITG 5.2.4 Workshop "Wireless Mesh and Relay Networks" 27. October 2008, Munich

Copyright © Siemens AG 2006-08. All rights reserved.

IEEE 802.11s Usage Scenarios

©2004 MapQuest.com, Inc.; ©2004 Navigation Technologies Residential (top), Campus / Community / Public Access (bottom) pictures from: IEEE document 11-04/0662r16

Terms and Definitions

Terminology for mesh networking

WLAN Mesh – A General Example

WLAN Mesh – Backhaul Mesh with Legacy Stations

WLAN Mesh – Client Mesh

Major Properties of IEEE 802.11s WLAN Mesh Networking (I)

MAC address based mesh routing protocol ⇒Hybrid Wireless Mesh Protocol (HWMP)

Layer 2 routing protocol extensible mesh path selection architecture

radio-aware routing metric ⇒airtime link metric

use of WDS 4-address frame or extension

- extension of 4 addresss frame format
- 6-address scheme for IEEE 802.11 mesh data frames

mesh unicast / multicast / broadcast data delivery

- unicast:
 - via paths established with path selection protocol (HWMP)
 - PTK for unicast transmission
- multicast / broadcast:
 - flooding of broadcast frames in mesh network
 - GTK for security

Extensible Path Selection Framework

HWMP

6 Address Scheme

SIEMENS

Hybrid Wireless Mesh Protocol

- Ad hoc On-demand Distance Vector Routing Protocol (AODV) as basis
 - uses MAC addresses
 - works with arbitrary link metrics
 - handles proxy MSTAs
 - always available
- Proactive tree to designated MSTAs
 - requires MSTA configured as root MSTA
 - periodic flooding of proactive PREQs or RANNs by root MSTA
 - 3 modes:
 - proactive PREQs on-demand PREP (no proactive PREP)
 - proactive PREQs proactive PREP (configured at root MSTA)
 - root announcement (RANNs)

Extensibility in IEEE 802.11s

- make IEEE 802.11s adaptable to different usage scenarios
- allow the use of vendor specific solutions for routing and routing metrics
- choice of default routing protocol, optional standardized routing protocols, or vendor specific routing protocols
- choice of default routing metric or vendor specific routing metrics
- works over any IEEE 802.11 PHY/MAC (e.g. 802.11n)
- used protocol and metrics announced in mesh identifier

6-Address Scheme for Mesh Data Frames

existence of addresses 5 & 6 indicated by address extension mode setting in mesh data frame

lĴ

Major Properties of IEEE 802.11s WLAN Mesh Networking (II)

support for single and multiple radios

- recommendations for multiple interfaces
- specific solutions are implementation topic

mesh network size: ca. 32 mesh nodes (up to 50 mesh nodes)

all mechanisms will scale to up to 50 mesh nodes

mesh security: IEEE 802.11i as basis

- IEEE 802.11i for link security
- adaptations for security over mesh backhaul
- Mesh Security Architecture (MSA) with concepts from IEEE 802.11r
- MSA-PSK for client meshes

backwards compatibility with legacy BSS and STA

separation between mesh functionality and AP functionality

no PHY changes required

done

Major Properties of IEEE 802.11s WLAN Mesh Networking (III)

time synchronization

- needed for power save and mesh deterministic access
- link-local time synchronization

power save

- needed for battery-powered customer devices, GreenIT
- light sleep and deep sleep modes for different degrees of power save

mesh deterministic access (MDA)

- needed for applications with strict delay requirements
- distributed reservation of MDA opportunities (MDAOP)

compatibility with higher-layer protocols (transparent to higher layers)

transparent to IP, IEEE 802.1

Major Functional Components for 802.11s Mesh STAs

IEEE 802.11 Standardization Process

Status of IEEE 802.11s (WLAN Mesh Networking)

Proposals

- 15 proposals to IEEE 802.11s in July 2005, includes a proposal by Siemens
- Draft D0.01 in March 2006

Reviews / Letter Ballots

- Internal Review during April 2006 by Task Group s
- 1st Letter Ballot in December 2006 / January 2007
 - failed with 48% yes votes, 5714 comments
- 2nd Letter Ballot in April / May 2008
 - failed with 61% yes votes, 1964 comments, ca. 600 still open

Technical Content

- AODV + configurable tree to root mesh STA with radio-aware metric based on MAC addresses (layer 2 routing protocol)
- extensible routing architecture
- security for transport functionality and authentication with access points (based on 802.11i)

Next Steps

- resolution of comments from letter ballot in Task Group s
- third letter ballot (Draft D3.0) in January 2009
- 2010 standard approved

Comment Resolution Progress in IEEE 802.11s

Seite 16 27-Oct-2008 Michael Bahr, CT IC 2 © Siemens AG, Corporate Technology