Simulation tools and realization
approaches using dedicated hardware for
accelerating radio channel computation

ITG 5.2.4 Workshop "Simulating Mobile Networks"

Matthias Kaschub
matthias.kaschub@ikr.uni-stuttgart.de
Stuttgart, 19.06.2008

Universitat Stuttgart

Institute of Communication Networks
and Computer Engineering (IKR)
Prof. Dr.-Ing. Dr. h.c. mult. P. J. Kihn

Qutline

Motivation

e Current situation

o Parallelism
— Overview
— Types of parallelism

Instruction level
Fine grained
Task parallelism
Batch parallelism
Job offloading

e Hardware architectures

— IBM Cell processor
— NVIDIA Cuda

e Conclusion

© 2008 Universitat Stuttgart e IKR

ITG 5.2.4 Workshop "Simulating Mobile Networks"

Motivation

Premise

Computational complexity of simulation increases

e Systems under examination becoming more complex
— Systems incorporate more and more algorithms and mechanisms
ARQ, HARQ, CQI, MIMO, ICIC, FSPS
— Feedback: everything is influencing everything else
No layering in scheduling anymore

e Multiscale models
— Algorithms work on multiple timescales
— Algorithms and its effect on different timescales

« Computational complex algorithms

— Complex algorithms in standards and real systems
Examples: FFT, matrix inversion, optimization problems ...
— Research: more general solutions

» Before developing heuristics and for benchmarking heuristics
 Examples: genetic algorithms, LP, graph theory...

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Motivation

Profiling

Main performance killers in current simulations of mobile access networks

 Message passing
Classical event driven simulation
* Physical models
— Channel models
— User behavior
— Raytracing
o Algorithms
— Optimization: LP, ILP, GA, SA...
— Graph algorithms: routing, coloring
— Machine learning: classification, pattern recognition
— Signal processing

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Motivation

Why parallelization

Why not just run simulation with different parameters in parallel?

e Simulation time will increase:

— Simulation programs keep getting more complex
— Speed of single CPU core is not going to increase much anymore

e Simulation time >12h (over night) bad for productivity
* Debugging
» Bachelor thesis is only 3 or 4 months

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Current situation

Properties of event-driven network simulation

» Single threaded

— Single "calendar"
— Events processed strictly sequentially

* High connectivity

Every object may (indirectly) access every other object
* Unclear bottlenecks

Usually no method that executes for > 1s
* No (external) blocking

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Qutline

 Motivation

e Current situation

e Parallelism

— Overview
— Types of parallelism

Instruction level
Fine grained
Task parallelism
Batch parallelism
Job offloading

e Hardware architectures

— IBM Cell processor
— NVIDIA Cuda

e Conclusion

© 2008 Universitat Stuttgart e IKR

ITG 5.2.4 Workshop "Simulating Mobile Networks"

Parallelism

Overview

Types of parallelism available in current computer systems

« Data & Instruction parallelism
— Technology: Altivec/SSE

o Task parallelism
— Technology: OpenMP, Threads, processes
— Variants:

* Fine grained (loop parallelism; OpenMP)
» Vertical split (pipelining on modeling level)
» Horizontal split (parallelizing modules)

« Job offloading
Specialized hardware: NVIDIA Cuda, IBM Cell processor

» Batch parallelization
Simulation control

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Parallelism

Data & instruction parallelism + Instruction level
* Fine grained

Basic concept « Task parallelism

e SIMD (Single Instruction Multiple Data) « Batch parallelism

« Available implementation » Job offloading

— SSE (in modern x86 CPUSs)

: . addps a, b
— Altivec (in modern PowerPC CPUSs) 127 0
« Performance gain XMM a | |a3 | |32 | |a1 | Iao |
— Factor 2 ... 4 for single core XMM b b3 b2 b
— Data needs to be vectorizable S‘+ ‘[S‘+ J S‘+ J S*+ J
— Mainly for number chrunching XMMa | 33 | az | a1 | ao |

Problems

« Limited compiler support (except for special standard cases)
— Hand-optimized code necessary (assembler knowledge)

* No big speedup in future processors expected

— Suitable for problems that are easy to vectorize, limited effort, limited gain

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks" 9

Parallelism

Fine grained task parallelism (1)

Basic ldea

» Parallelizing event processing

e Using threads manually or with OpenMP
» Locking data structures

Problems

* High connectivity of code
— Locking become performance bottleneck

» Such programs are hard to debug

— That will never work

© 2008 Universitat Stuttgart e IKR

Instruction level
Fine grained
Task parallelism
Batch parallelism
Job offloading

ITG 5.2.4 Workshop "Simulating Mobile Networks"

10

Parallelism

Fine grained task parallelism (2) - Instruction leve!
 Fine grained
Basic idea « Task parallelism

» Batch parallelism

Different simulation paradigm:
» Job offloading

Asynchronous messages instead of synchronous method calls

Properties
» Allows adding transparent fine grained parallelism

» Differences to traditional event-driven paradigm

— Events are asynchronous messages
— Each message handler publishes time cap (horizon)
— Calendar schedules messages depending on timestamps and horizon

Drawbacks
» Lack of proper toolkits (user-friendly, transparent parallelism, low overhead)
« "Erlang" not widespread

— New paradigm, requires complete rewrite of existing code

© 2008 Universitat Stuttgart ¢ IKR ITG 5.2.4 Workshop "Simulating Mobile Networks" 11

Parallelism

Task parallelism

Typical simulation

model:

© 2008 Universitat Stuttgart ¢ IKR

Stream Stream Stream Stream Stream Stream
App. App. App. App. App. App.
} } } } } }
IP IP IP P IP P
i { i { i i
Backhaul Backhaul Backhaul Backhaul Backhaul Backhaul
BS BS
IP IP
} }
MAC MAC
} }
Phy. Phy.
MS MS MS MS MS MS
Phy. Phy. Phy. Phy. Phy. Phy.
} } } } } }
MAC MAC MAC MAC MAC MAC
} } } } } }
IP IP IP IP IP IP
A A A A A A
} ! ! } ! !
App. App. App. App. App. App.

ITG 5.2.4 Workshop "Simulating Mobile Networks"

12

Parallelism

Horizontal task parallelism - Instruction level
* Fine grained

Basic idea « Task parallelism

 Split problem into multiple layers * Baitch parallelism

« Typical command line example: » Job offloading

./SimTraffic | SimMobility | \

. . Stream Stream Stream Stream Stream Stream
./S}mChannels | ./SimMAC | \ o e et e e e
./SimEval H

Backhaul
Advantages
* Inherent modularization
 Easier debugging == w ==
» Less resource conflicts (files ...) I IE IE IE IE I
| Phy. |_.| Phy. |_.| Phy. | | Phy. |._,| Phy. |_.| Phy. |
PrObIemS MAC MAC MAC MAC MAC MAC
|L It:’ | | |f3 | | |f3 | | |f° | | If:’ |
» Parallelization limited to number of layers |) |
Lo . . . App. App. App. App. App. App.
» Feedback (bidirectional communication)

— Suitable if the simulation model is unidirectional

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks" 13

Parallelism

Instruction level
Fine grained
Task parallelism
Batch parallelism
Job offloading

Vertical task parallelism

Basic idea

» Split problem into blocks of same type

* e.g. one process/thread per mobile or

Stream Stream Stream Stream Stream Stream
per sector | e e |
1 1 i i 1 1
Advantages R | | S i | S |
]] .] | Backhaul | | Backhaul | | Backhaul | | Backhaul | | Backhaul | | Backhaul |
* High degree of parallelization possible BS BS
| P | | P |
e Clean approach | T Ll T |
} i
Problems | Pty i Phy |
MS MS MS MS MS MS
e Resource Conﬂicts [Py [Py 4l Py RHAM Py Rl Py il Phy |
o Hal‘d tO debug | M,:AC | | M;:AC | | M;:AC | | M/:\c | | M,:AC | | M,:AC |
_ . _ _ e I ® ||| » | e I ® ||| » |
» Communication and synchronization i : : :] :
[meo J{[[_meo J{[[_mee JJ{[ee]| [oo || [_Aer]
becomes bottleneck

— Suitable only if model consists of nearly autonomous blocks (not for mobile networks)

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks" 14

Parallelism

Communication for task parallelism

Shared memory (threads & mutexes)
Limited to one computer
* Local IPC (SysV, Sockets)
Limited to one computer
Slow
» Network protocols (RPC, RMI ...)
Large latency, overhead and complexity
* Pipes, named pipes
Simple, but limited to one-way communication
Network transparency with "netcat"
* Files
Simple, but limited to one-way communication

Very slow
Allows delayed processing (precalculation)

Instruction level
Fine grained
Task parallelism
Batch parallelism
Job offloading

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Parallelism

Batch parallelism

Basic idea

* Run multiple batches in parallel

« Aggregate results

Advantages
: CPU 1:
« Easy to implement
(existing code can be
reused)
CPU 1:
 Easy to debug
CPU 2:

Problems

e Overhead due to
transient phase

Instruction level
Fine grained

Task parallelism
Batch parallelism
Job offloading

» Correct length of transient phase is more critical

— Usable for simulation of mobile networks, implemented in IKR-Simlib

© 2008 Universitat Stuttgart e IKR

Transient | "5 tch1 | Batch2 | Batch3 | Batch4 |Eval
Phase
>
CPU time
Transient Ko
Phase
Transient S |
Phase
>
CPU time
ITG 5.2.4 Workshop "Simulating Mobile Networks" 16

Parallelism
Job offloading (1)

Basic idea
* Run main simulation on normal computer
» Offload special jobs on dedicated hardware

Properties

* Only applicable for jobs that are long
enough to hide communication overhead

» Taking advantage of dedicated hardware
without changing the event-driven
simulation paradigm

© 2008 Universitat Stuttgart e IKR

Instruction level
Fine grained
Task parallelism
Batch parallelism
Job offloading

standard CPU

classical
event-driven
simulation

r) | special algorithm

dedicated hardware

dedicated hardware

special algorithm

ITG 5.2.4 Workshop "Simulating Mobile Networks"

17

Parallelism

Job offloading (2)

Problems

» Offloading causes blocking that needs to be hidden

— Hide blocking by running multiple
instances in parallel

_ blocking
— Precalculate where possible
]] main dedicated
» Debugging is harder simulation hardware
blocked]

Instruction level
Fine grained
Task parallelism
Batch parallelism
Job offloading

precalculate

main dedicated
simulation hardware

RV

— Suitable for certain problems (radio channel calculation, optimization ...)

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

18

Qutline

Motivation

e Current situation

o Parallelism
— Overview
— Types of parallelism

Instruction level
Fine grained
Task parallelism
Batch parallelism
Job offloading

« Hardware architectures

— IBM Cell processor
— NVIDIA Cuda

e Conclusion

© 2008 Universitat Stuttgart e IKR

ITG 5.2.4 Workshop "Simulating Mobile Networks"

19

Radio Channel Calculation

Computational complex algorithm as example

« Channel model provides the "taps" by specifying 0, fDn, and t,
* Depending on channel model, these are constants or computational complex random

processes
e Fourier-Transform:

N jen jznfanT _j 0T,

H(w) = Zn:le e e

 Computed for each combination of mobile and base station,

each TTI, multiple frequencies

 Model implemented on dedicated hardware in the following

examples:
WSSUS (Hoeher model)

© 2008 Universitat Stuttgart e IKR

ITG 5.2.4 Workshop "Simulating Mobile Networks"

20

NVIDIA CUDA

Overview

Properties
* 96 processing units
* QOrganizes in blocks

 Memory access and command execution inside

blocks needs to be synchronized

e Local memory very limited

* Processing units support fast and transparent

multithreading

» Transfer from/to device memory has to be hidden with

threads

Constraints on suitable problems

Device Memory

e Multiple (>1000) problems that need the same
sequence of commands to be solved

. Or single big problem that can be divided into multiple =2
[_] Shared memory
such problems [Control Unit
[IBlock

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

21

NVIDIA CUDA

Radio channel computation

Main Aspects

* Using CUDA (API to program NVIDIA graphics cards in C)

» Synchronous kernel, precalculating channel data

Main Problems
 Memory limitations on GPU
* No asynchronous communication

Performance
o ~30x speedup over 2.4 GHz Intel Core 2
* Roundtrip time for 1 kernel call around 1 second

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

22

NVIDIA CUDA

Results

Graph shows:

e X axis: number of
channels to be
calculated in the
simulation

e Y axis: total execution
time (normalized)

e Main simulation is not
considered in this graph
(dummy simulation)

— Each kernel call has to
solve thousands of jobs
at the same time
(threading)

© 2008 Universitat Stuttgart e IKR

Execuion Time (m.sec.)

1600

1400

1200

—_

o

o

o
T

800+

600+

400+

10 Symbols,
1000 Subcarriers,
100 Taps

3073

New Kernel Call Overhead

3072

Memory Overhead |
For Extra Channels

9216

2000

3000 4000 5000 6000 7000 8000
Number of Channels

ITG 5.2.4 Workshop "Simulating Mobile Networks"

9000 10000

23

IBM Cell Processor

Overview
Properties
o ~200 GFlops
e Each SPE contains
— 256 kB SRAM | e | | - |
— 4x SIMD (single
precision) PPE SPE SPE SPE SPE
— No MMU etc. Power SXU SXU SXU SXU
core Cache I I I I
 PPE & SPEs SRAM SRAM SRAM SRAM
communicate over DMA
« 8 or 6 SPEs per chip Bus
SRAM SRAM SRAM SRAM
Memory & 10 I I I I
Controller SXU SXU SXU SXU
SPE SPE SPE SPE

DMA Direct Memory Access

SPE Synergistic Processing Element
MMU Memory Management Unit (Address calculation etc.)t

© 2008 Universitat Stuttgart e IKR

PPE PowerPC Processing Element
SXU Synergistic eXecution Uni

ITG 5.2.4 Workshop "Simulating Mobile Networks"

24

IBM Cell Processor

Radio channel computation

Main Aspects ppig _[wes
» Kernel on each SPE f; o
. . . . [Simulation |
« Asynchronous communication with PPE y | e
: ‘b :-,t SPE source :
« Hand-Optimizing code: i ey || e
! ! 000e
— Vectorization for SIMD instruction set done by hand spe tasks (] .| seE2
| O
— SXU pipeline by hand ool
: : . SPE 3
Main Problems | E— R //"’_
) . I @0 =1 oeee
« Parallel programming (mutex debugging) | | SPE 4
i (@
« Scheduling of jobs to PPEs § . eeew
' ' SPE 5
Performance L o
» ~16x speedup over 2.2 GHz AMD Opteron [PPE thread

® Integer index into spe_tasks array

* Roundtrip time for PPE-SPE communication ~3us
(under full load)

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

IBM Cell Processor

Results

z
Graph shows: 2
« X axis: real time, the 5
main simulation needs g
per TTl and channel =]
* Y axis: total execution g 3 T 3 SPEs
time (normalized) T o20- 4SPES o
o | 6 SPEs
0 %l | | lower bound |

0 10 20 30 40 50

other simulation time (OST) per channel (us)

— Optimal performance when the computation time in the main simulation and on SPEs
are similar (both run 100% of time)

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks" 26

Job Offloading

Architecture comparison

x86 Computer Cell Processor NVIDIA CUDA
Performance ~4 GFlops per core | ~200 GFlops ~500 GFlops (8800 GTX)
Typical latency ~1us ~3 us typically Seconds
Memory per Thread | GBytes 200 kByte 0.5 .. 10 kByte
Programming All languages Full C/C++ with Basic C with addons

intrinsics or ASM

Paralleization SIMD, Batches, Job offloading Job offloading
methods: Job offloading
Price (06/2008) ~300 EUR per core | PS3: ~450 EUR ~100 EUR

Blades: ~5000 EUR

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Conclusion

Problems

* Message passing

Classical event driven simulation

* Physical models

Channel models
User behavior
Raytracing

» Algorithms

© 2008 Universitat Stuttgart e IKR

Optimization: LP, ILP, GA, SA, ...
Graph algorithms: routing, coloring

Machine learning: classification,
pattern recognition

Signal processing

Batch parallelization
New simulation paradigms

SIMD
Job Offloading

Cell Processor
NVIDIA CUDA

ITG 5.2.4 Workshop "Simulating Mobile Networks"

28

Conclusion

Parallelization methods

SIMD

Limited performance (max. 2 .. 4) gain, vectorization required

Fine Grained Parallelism

New paradigm required, complete rewrite of existing code

Task parallelism:

Only suitable for certain kinds of simulation, synchronization problem

Job Offloading

Suitable for certain problems as an add-on to unmodified simulation

Batch parallelism

Suitable, implemented in IKR-Simlib

© 2008 Universitat Stuttgart e IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

29

	Motivation
	Motivation
	Current situation
	Parallelism
	Parallelism
	Parallelism
	Parallelism
	Parallelism
	Parallelism
	Parallelism
	Parallelism
	NVIDIA CUDA
	NVIDIA CUDA
	IBM Cell Processor
	IBM Cell Processor
	IBM Cell Processor
	Job Offloading
	Conclusion

