
Universität Stuttgart
Institute of Communication Networks
and Computer Engineering (IKR)
Prof. Dr.-Ing. Dr. h.c. mult. P. J. Kühn

Simulation tools and realization
approaches using dedicated hardware for
accelerating radio channel computation

ITG 5.2.4 Workshop "Simulating Mobile Networks"

Matthias Kaschub
matthias.kaschub@ikr.uni-stuttgart.de
Stuttgart, 19.06.2008

2© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Outline

• Motivation

• Current situation

• Parallelism

– Overview

– Types of parallelism

• Instruction level

• Fine grained

• Task parallelism

• Batch parallelism

• Job offloading

• Hardware architectures

– IBM Cell processor

– NVIDIA Cuda

• Conclusion

3© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Motivation

Premise

Computational complexity of simulation increases

• Systems under examination becoming more complex

– Systems incorporate more and more algorithms and mechanisms

ARQ, HARQ, CQI, MIMO, ICIC, FSPS

– Feedback: everything is influencing everything else

No layering in scheduling anymore

• Multiscale models

– Algorithms work on multiple timescales

– Algorithms and its effect on different timescales

• Computational complex algorithms

– Complex algorithms in standards and real systems
Examples: FFT, matrix inversion, optimization problems ...

– Research: more general solutions

• Before developing heuristics and for benchmarking heuristics

• Examples: genetic algorithms, LP, graph theory...

4© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Motivation

Profiling

Main performance killers in current simulations of mobile access networks

• Message passing

Classical event driven simulation

• Physical models

– Channel models

– User behavior

– Raytracing

• Algorithms

– Optimization: LP, ILP, GA, SA...

– Graph algorithms: routing, coloring

– Machine learning: classification, pattern recognition

– Signal processing

5© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Motivation

Why parallelization

Why not just run simulation with different parameters in parallel?

• Simulation time will increase:

– Simulation programs keep getting more complex

– Speed of single CPU core is not going to increase much anymore

• Simulation time >12h (over night) bad for productivity

• Debugging

• Bachelor thesis is only 3 or 4 months

6© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Current situation

Properties of event-driven network simulation

• Single threaded

– Single "calendar"

– Events processed strictly sequentially

• High connectivity

Every object may (indirectly) access every other object

• Unclear bottlenecks

Usually no method that executes for > 1s

• No (external) blocking

7© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Outline

• Motivation

• Current situation

• Parallelism

– Overview

– Types of parallelism

• Instruction level

• Fine grained

• Task parallelism

• Batch parallelism

• Job offloading

• Hardware architectures

– IBM Cell processor

– NVIDIA Cuda

• Conclusion

8© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Parallelism

Overview

Types of parallelism available in current computer systems

• Data & Instruction parallelism

– Technology: Altivec/SSE

• Task parallelism

– Technology: OpenMP, Threads, processes

– Variants:

• Fine grained (loop parallelism; OpenMP)

• Vertical split (pipelining on modeling level)

• Horizontal split (parallelizing modules)

• Job offloading

Specialized hardware: NVIDIA Cuda, IBM Cell processor

• Batch parallelization

Simulation control

9© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Parallelism

Data & instruction parallelism

Basic concept

• SIMD (Single Instruction Multiple Data)

• Available implementation

– SSE (in modern x86 CPUs)

– Altivec (in modern PowerPC CPUs)

• Performance gain

– Factor 2 ... 4 for single core

– Data needs to be vectorizable

– Mainly for number chrunching

Problems

• Limited compiler support (except for special standard cases)

→ Hand-optimized code necessary (assembler knowledge)

• No big speedup in future processors expected

→ Suitable for problems that are easy to vectorize, limited effort, limited gain

• Instruction level

• Fine grained

• Task parallelism

• Batch parallelism

• Job offloading

10© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Parallelism

Fine grained task parallelism (1)

Basic Idea

• Parallelizing event processing

• Using threads manually or with OpenMP

• Locking data structures

Problems

• High connectivity of code

→ Locking become performance bottleneck

• Such programs are hard to debug

→ That will never work

• Instruction level

• Fine grained

• Task parallelism

• Batch parallelism

• Job offloading

11© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Parallelism

Fine grained task parallelism (2)

Basic idea

Different simulation paradigm:

Asynchronous messages instead of synchronous method calls

Properties

• Allows adding transparent fine grained parallelism

• Differences to traditional event-driven paradigm

– Events are asynchronous messages

– Each message handler publishes time cap (horizon)

– Calendar schedules messages depending on timestamps and horizon

Drawbacks

• Lack of proper toolkits (user-friendly, transparent parallelism, low overhead)

• "Erlang" not widespread

→ New paradigm, requires complete rewrite of existing code

• Instruction level

• Fine grained

• Task parallelism

• Batch parallelism

• Job offloading

12© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Parallelism

Task parallelism

Typical simulation
model:

13© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Parallelism

Horizontal task parallelism

Basic idea

• Split problem into multiple layers

• Typical command line example:

./SimTraffic | SimMobility | \
./SimChannels | ./SimMAC | \
./SimEval

Advantages

• Inherent modularization

• Easier debugging

• Less resource conflicts (files ...)

Problems

• Parallelization limited to number of layers

• Feedback (bidirectional communication)

→ Suitable if the simulation model is unidirectional

• Instruction level

• Fine grained

• Task parallelism

• Batch parallelism

• Job offloading

14© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Parallelism

Vertical task parallelism

Basic idea

• Split problem into blocks of same type

• e.g. one process/thread per mobile or
per sector

Advantages

• High degree of parallelization possible

• Clean approach

Problems

• Resource conflicts

• Hard to debug

• Communication and synchronization
becomes bottleneck

→ Suitable only if model consists of nearly autonomous blocks (not for mobile networks)

• Instruction level

• Fine grained

• Task parallelism

• Batch parallelism

• Job offloading

15© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Parallelism

Communication for task parallelism

• Shared memory (threads & mutexes)

Limited to one computer

• Local IPC (SysV, Sockets)

Limited to one computer

Slow

• Network protocols (RPC, RMI ...)

Large latency, overhead and complexity

• Pipes, named pipes

Simple, but limited to one-way communication

Network transparency with "netcat"

• Files

Simple, but limited to one-way communication

Very slow

Allows delayed processing (precalculation)

• Instruction level

• Fine grained

• Task parallelism

• Batch parallelism

• Job offloading

16© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Parallelism

Batch parallelism

Basic idea

• Run multiple batches in parallel

• Aggregate results

Advantages

• Easy to implement
(existing code can be
reused)

• Easy to debug

Problems

• Overhead due to
transient phase

• Correct length of transient phase is more critical

→ Usable for simulation of mobile networks, implemented in IKR-Simlib

• Instruction level

• Fine grained

• Task parallelism

• Batch parallelism

• Job offloading

17© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Parallelism

Job offloading (1)

Basic idea

• Run main simulation on normal computer

• Offload special jobs on dedicated hardware

Properties

• Only applicable for jobs that are long
enough to hide communication overhead

• Taking advantage of dedicated hardware
without changing the event-driven
simulation paradigm

• Instruction level

• Fine grained

• Task parallelism

• Batch parallelism

• Job offloading

18© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Parallelism

Job offloading (2)

Problems

• Offloading causes blocking that needs to be hidden

– Hide blocking by running multiple
instances in parallel

– Precalculate where possible

• Debugging is harder

→ Suitable for certain problems (radio channel calculation, optimization ...)

• Instruction level

• Fine grained

• Task parallelism

• Batch parallelism

• Job offloading

blocking precalculate

19© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Outline

• Motivation

• Current situation

• Parallelism

– Overview

– Types of parallelism

• Instruction level

• Fine grained

• Task parallelism

• Batch parallelism

• Job offloading

• Hardware architectures

– IBM Cell processor

– NVIDIA Cuda

• Conclusion

20© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Radio Channel Calculation

Computational complex algorithm as example

• Channel model provides the "taps" by specifying , , and

• Depending on channel model, these are constants or computational complex random
processes

• Fourier-Transform:

• Computed for each combination of mobile and base station,
each TTI, multiple frequencies

• Model implemented on dedicated hardware in the following
examples:
WSSUS (Hoeher model)

θn fDn
τn

H ω() e
jθne

j2πfDn
kT

e
jωτn–

n 1=
N∑=

0
10

20
30

40
50

0

20

40

60
0

1

2

3

21© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

NVIDIA CUDA

Overview

Properties

• 96 processing units

• Organizes in blocks

• Memory access and command execution inside
blocks needs to be synchronized

• Local memory very limited

• Processing units support fast and transparent
multithreading

• Transfer from/to device memory has to be hidden with
threads

Constraints on suitable problems

• Multiple (>1000) problems that need the same
sequence of commands to be solved

• Or single big problem that can be divided into multiple
such problems

Above image from http://www.nvidia.com/object/geforce_8800gt.html

22© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

NVIDIA CUDA

Radio channel computation

Main Aspects

• Using CUDA (API to program NVIDIA graphics cards in C)

• Synchronous kernel, precalculating channel data

Main Problems

• Memory limitations on GPU

• No asynchronous communication

Performance

• ~30x speedup over 2.4 GHz Intel Core 2

• Roundtrip time for 1 kernel call around 1 second

23© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

NVIDIA CUDA

Results

Graph shows:

• X axis: number of
channels to be
calculated in the
simulation

• Y axis: total execution
time (normalized)

• Main simulation is not
considered in this graph
(dummy simulation)

→ Each kernel call has to
solve thousands of jobs
at the same time
(threading)

24© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

IBM Cell Processor

Overview

Properties

• ~200 GFlops

• Each SPE contains

– 256 kB SRAM

– 4x SIMD (single
precision)

– No MMU etc.

• PPE & SPEs
communicate over DMA

• 8 or 6 SPEs per chip

DMA Direct Memory Access PPE PowerPC Processing Element
SPE Synergistic Processing Element SXU Synergistic eXecution Uni
MMU Memory Management Unit (Address calculation etc.)t

Above image fromhttp://www-06.ibm.com/systems/jp/bladecenter Above image from http://www.ps3informer.com/playstation-3/news/

25© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

IBM Cell Processor

Radio channel computation

Main Aspects

• Kernel on each SPE

• Asynchronous communication with PPE

• Hand-Optimizing code:

– Vectorization for SIMD instruction set done by hand

– SXU pipeline by hand

Main Problems

• Parallel programming (mutex debugging)

• Scheduling of jobs to PPEs

Performance

• ~16x speedup over 2.2 GHz AMD Opteron

• Roundtrip time for PPE-SPE communication ~
(under full load)

3μs

26© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

IBM Cell Processor

Results

Graph shows:

• X axis: real time, the
main simulation needs
per TTI and channel

• Y axis: total execution
time (normalized)

→ Optimal performance when the computation time in the main simulation and on SPEs
are similar (both run 100% of time)

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50

to
ta

l s
im

ul
at

io
n

tim
e

(m
s)

other simulation time (OST) per channel (μs)

2 SPEs
3 SPEs
4 SPEs
5 SPEs
6 SPEs

lower bound

27© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Job Offloading

Architecture comparison

x86 Computer Cell Processor NVIDIA CUDA

Performance ~4 GFlops per core ~200 GFlops ~500 GFlops (8800 GTX)

Typical latency ~1us ~3 us typically Seconds

Memory per Thread GBytes 200 kByte 0.5 .. 10 kByte

Programming All languages Full C/C++ with
intrinsics or ASM

Basic C with addons

Paralleization
methods:

SIMD, Batches,

Job offloading

Job offloading Job offloading

Price (06/2008) ~300 EUR per core PS3: ~450 EUR

Blades: ~5000 EUR

~100 EUR

28© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Conclusion

Problems

• Message passing

Classical event driven simulation

• Physical models

– Channel models

– User behavior

– Raytracing

• Algorithms

– Optimization: LP, ILP, GA, SA, ...

– Graph algorithms: routing, coloring

– Machine learning: classification,
pattern recognition

– Signal processing

Batch parallelization
New simulation paradigms

NVIDIA CUDA

SIMD
Job Offloading
Cell Processor

29© 2008 Universität Stuttgart • IKR ITG 5.2.4 Workshop "Simulating Mobile Networks"

Conclusion

Parallelization methods

SIMD

Limited performance (max. 2 .. 4) gain, vectorization required

Fine Grained Parallelism

New paradigm required, complete rewrite of existing code

Task parallelism:

Only suitable for certain kinds of simulation, synchronization problem

Job Offloading

Suitable for certain problems as an add-on to unmodified simulation

Batch parallelism

Suitable, implemented in IKR-Simlib

	Motivation
	Motivation
	Current situation
	Parallelism
	Parallelism
	Parallelism
	Parallelism
	Parallelism
	Parallelism
	Parallelism
	Parallelism
	NVIDIA CUDA
	NVIDIA CUDA
	IBM Cell Processor
	IBM Cell Processor
	IBM Cell Processor
	Job Offloading
	Conclusion

