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Motivation

Premise

Computational complexity of simulation increases

e Systems under examination becoming more complex
— Systems incorporate more and more algorithms and mechanisms
ARQ, HARQ, CQI, MIMO, ICIC, FSPS
— Feedback: everything is influencing everything else
No layering in scheduling anymore

e Multiscale models
— Algorithms work on multiple timescales
— Algorithms and its effect on different timescales

« Computational complex algorithms

— Complex algorithms in standards and real systems
Examples: FFT, matrix inversion, optimization problems ...
— Research: more general solutions

» Before developing heuristics and for benchmarking heuristics
 Examples: genetic algorithms, LP, graph theory...
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Motivation

Profiling

Main performance killers in current simulations of mobile access networks

 Message passing
Classical event driven simulation
* Physical models
— Channel models
— User behavior
— Raytracing
o Algorithms
— Optimization: LP, ILP, GA, SA...
— Graph algorithms: routing, coloring
— Machine learning: classification, pattern recognition
— Signal processing
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Motivation

Why parallelization

Why not just run simulation with different parameters in parallel?

e Simulation time will increase:

— Simulation programs keep getting more complex
— Speed of single CPU core is not going to increase much anymore

e Simulation time >12h (over night) bad for productivity
* Debugging
» Bachelor thesis is only 3 or 4 months
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Current situation

Properties of event-driven network simulation

» Single threaded

— Single "calendar"
— Events processed strictly sequentially

* High connectivity

Every object may (indirectly) access every other object
* Unclear bottlenecks

Usually no method that executes for > 1s
* No (external) blocking
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Parallelism

Overview

Types of parallelism available in current computer systems

« Data & Instruction parallelism
— Technology: Altivec/SSE

o Task parallelism
— Technology: OpenMP, Threads, processes
— Variants:

* Fine grained (loop parallelism; OpenMP)
» Vertical split (pipelining on modeling level)
» Horizontal split (parallelizing modules)

« Job offloading
Specialized hardware: NVIDIA Cuda, IBM Cell processor

» Batch parallelization
Simulation control
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Parallelism

Data & instruction parallelism + Instruction level
* Fine grained

Basic concept « Task parallelism

e SIMD (Single Instruction Multiple Data) « Batch parallelism

« Available implementation » Job offloading

— SSE (in modern x86 CPUSs)

: . addps a, b
— Altivec (in modern PowerPC CPUSs) 127 0
« Performance gain XMM a | |a3 | |32 | |a1 | Iao |
— Factor 2 ... 4 for single core XMM b b3 b2 b
— Data needs to be vectorizable S‘+ ‘[ S‘+ J S‘+ J S*+ J
— Mainly for number chrunching XMMa | 33 | az | a1 | ao |

Problems

« Limited compiler support (except for special standard cases)
— Hand-optimized code necessary (assembler knowledge)

* No big speedup in future processors expected

— Suitable for problems that are easy to vectorize, limited effort, limited gain
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Parallelism

Fine grained task parallelism (1)

Basic ldea

» Parallelizing event processing

e Using threads manually or with OpenMP
» Locking data structures

Problems

* High connectivity of code
— Locking become performance bottleneck

» Such programs are hard to debug

— That will never work
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Parallelism

Fine grained task parallelism (2) - Instruction leve!
 Fine grained
Basic idea « Task parallelism

» Batch parallelism

Different simulation paradigm:
» Job offloading

Asynchronous messages instead of synchronous method calls

Properties
» Allows adding transparent fine grained parallelism

» Differences to traditional event-driven paradigm

— Events are asynchronous messages
— Each message handler publishes time cap (horizon)
— Calendar schedules messages depending on timestamps and horizon

Drawbacks
» Lack of proper toolkits (user-friendly, transparent parallelism, low overhead)
« "Erlang" not widespread

— New paradigm, requires complete rewrite of existing code
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Parallelism

Task parallelism

Typical simulation

model:
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Parallelism

Horizontal task parallelism - Instruction level
* Fine grained

Basic idea « Task parallelism

 Split problem into multiple layers * Baitch parallelism

« Typical command line example: » Job offloading

./SimTraffic | SimMobility | \

. . Stream Stream Stream Stream Stream Stream
./S}mChannels | ./SimMAC | \ o e et e e e
./SimEval H

Backhaul
Advantages
* Inherent modularization
 Easier debugging == w ==
» Less resource conflicts (files ...) I IE IE IE IE I
| Phy. |_.| Phy. |_.| Phy. | | Phy. |._,| Phy. |_.| Phy. |
PrObIemS MAC MAC MAC MAC MAC MAC
|L It:’ | | |f3 | | |f3 | | |f° | | If:’ |
» Parallelization limited to number of layers | ) |
Lo . . . App. App. App. App. App. App.
» Feedback (bidirectional communication)

— Suitable if the simulation model is unidirectional
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Parallelism

Instruction level
Fine grained
Task parallelism
Batch parallelism
Job offloading

Vertical task parallelism

Basic idea

» Split problem into blocks of same type

* e.g. one process/thread per mobile or

Stream Stream Stream Stream Stream Stream
per sector | e e |
1 1 i i 1 1
Advantages R | | S i | S |
] ] . ] | Backhaul | | Backhaul | | Backhaul | | Backhaul | | Backhaul | | Backhaul |
* High degree of parallelization possible BS BS
| P | | P |
e Clean approach | T Ll T |
} i
Problems | Pty i Phy |
MS MS MS MS MS MS
e Resource Conﬂicts [Py [ Py 4l Py RHAM Py Rl Py il Phy |
o Hal‘d tO debug | M,:AC | | M;:AC | | M;:AC | | M/:\c | | M,:AC | | M,:AC |
_ . _ _ e I ® ||| » | e I ® ||| » |
» Communication and synchronization i : : : ] :
[ meo J{[[_meo J{[[_mee JJ{[ee ]| [ oo || [_Aer ]
becomes bottleneck

— Suitable only if model consists of nearly autonomous blocks (not for mobile networks)
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Parallelism

Communication for task parallelism

Shared memory (threads & mutexes)
Limited to one computer
* Local IPC (SysV, Sockets)
Limited to one computer
Slow
» Network protocols (RPC, RMI ...)
Large latency, overhead and complexity
* Pipes, named pipes
Simple, but limited to one-way communication
Network transparency with "netcat"
* Files
Simple, but limited to one-way communication

Very slow
Allows delayed processing (precalculation)

Instruction level
Fine grained
Task parallelism
Batch parallelism
Job offloading
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Parallelism

Batch parallelism

Basic idea

* Run multiple batches in parallel

« Aggregate results

Advantages
: CPU 1:
« Easy to implement
(existing code can be
reused)
CPU 1:
 Easy to debug
CPU 2:

Problems

e Overhead due to
transient phase

Instruction level
Fine grained

Task parallelism
Batch parallelism
Job offloading

» Correct length of transient phase is more critical

— Usable for simulation of mobile networks, implemented in IKR-Simlib
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Parallelism
Job offloading (1)

Basic idea
* Run main simulation on normal computer
» Offload special jobs on dedicated hardware

Properties

* Only applicable for jobs that are long
enough to hide communication overhead

» Taking advantage of dedicated hardware
without changing the event-driven
simulation paradigm
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Instruction level
Fine grained
Task parallelism
Batch parallelism
Job offloading

standard CPU

classical
event-driven
simulation

r ) | special algorithm

dedicated hardware
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special algorithm
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Parallelism

Job offloading (2)

Problems

» Offloading causes blocking that needs to be hidden

— Hide blocking by running multiple
instances in parallel

_ blocking
— Precalculate where possible
] ] main dedicated
» Debugging is harder simulation  hardware
blocked ]

Instruction level
Fine grained
Task parallelism
Batch parallelism
Job offloading

precalculate

main dedicated
simulation hardware

RV

— Suitable for certain problems (radio channel calculation, optimization ...)
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Radio Channel Calculation

Computational complex algorithm as example

« Channel model provides the "taps" by specifying 0, fDn, and t,
* Depending on channel model, these are constants or computational complex random

processes
e Fourier-Transform:

N jen jznfanT _j 0T,

H(w) = Zn:le e e

 Computed for each combination of mobile and base station,

each TTI, multiple frequencies

 Model implemented on dedicated hardware in the following

examples:
WSSUS (Hoeher model)
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NVIDIA CUDA

Overview

Properties
* 96 processing units
* QOrganizes in blocks

 Memory access and command execution inside

blocks needs to be synchronized

e Local memory very limited

* Processing units support fast and transparent

multithreading

» Transfer from/to device memory has to be hidden with

threads

Constraints on suitable problems

Device Memory

e Multiple (>1000) problems that need the same
sequence of commands to be solved

. Or single big problem that can be divided into multiple =2
[_] Shared memory
such problems [ Control Unit
[ IBlock
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NVIDIA CUDA

Radio channel computation

Main Aspects

* Using CUDA (API to program NVIDIA graphics cards in C)

» Synchronous kernel, precalculating channel data

Main Problems
 Memory limitations on GPU
* No asynchronous communication

Performance
o ~30x speedup over 2.4 GHz Intel Core 2
* Roundtrip time for 1 kernel call around 1 second
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NVIDIA CUDA

Results

Graph shows:

e X axis: number of
channels to be
calculated in the
simulation

e Y axis: total execution
time (normalized)

e Main simulation is not
considered in this graph
(dummy simulation)

— Each kernel call has to
solve thousands of jobs
at the same time
(threading)
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IBM Cell Processor

Overview
Properties
o ~200 GFlops
e Each SPE contains
— 256 kB SRAM | e | | - |
— 4x SIMD (single
precision) PPE SPE SPE SPE SPE
— No MMU etc. Power SXU SXU SXU SXU
core Cache I I I I
 PPE & SPEs SRAM SRAM SRAM SRAM
communicate over DMA
« 8 or 6 SPEs per chip Bus
SRAM SRAM SRAM SRAM
Memory & 10 I I I I
Controller SXU SXU SXU SXU
SPE SPE SPE SPE

DMA Direct Memory Access

SPE Synergistic Processing Element
MMU Memory Management Unit (Address calculation etc.)t

© 2008 Universitat Stuttgart e IKR

PPE PowerPC Processing Element
SXU Synergistic eXecution Uni
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IBM Cell Processor

Radio channel computation

Main Aspects ppig _[wes
» Kernel on each SPE f; o
. . . . [Simulation |
« Asynchronous communication with PPE y | e
: ‘b :-,t SPE source :
« Hand-Optimizing code: i ey || e
! ! 000e
— Vectorization for SIMD instruction set done by hand spe tasks (] .| seE2
| O
— SXU pipeline by hand ool
: : . SPE 3
Main Problems | E— R //"’_
) . I @0 =1 oeee
« Parallel programming (mutex debugging) | | SPE 4
i (@
« Scheduling of jobs to PPEs § . eeew
' ' SPE 5
Performance L o
» ~16x speedup over 2.2 GHz AMD Opteron [ PPE thread

® Integer index into spe_tasks array

* Roundtrip time for PPE-SPE communication ~3us
(under full load)
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IBM Cell Processor

Results

z
Graph shows: 2
« X axis: real time, the 5
main simulation needs g
per TTl and channel = ]
* Y axis: total execution g 3 T 3 SPEs
time (normalized) T o20- 4SPES o
o | 6 SPEs
0 %l | | lower bound |

0 10 20 30 40 50

other simulation time (OST) per channel (us)

— Optimal performance when the computation time in the main simulation and on SPEs
are similar (both run 100% of time)
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Job Offloading

Architecture comparison

x86 Computer Cell Processor NVIDIA CUDA
Performance ~4 GFlops per core | ~200 GFlops ~500 GFlops (8800 GTX)
Typical latency ~1us ~3 us typically Seconds
Memory per Thread | GBytes 200 kByte 0.5 .. 10 kByte
Programming All languages Full C/C++ with Basic C with addons

intrinsics or ASM

Paralleization SIMD, Batches, Job offloading Job offloading
methods: Job offloading
Price (06/2008) ~300 EUR per core | PS3: ~450 EUR ~100 EUR

Blades: ~5000 EUR
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Conclusion

Problems

* Message passing

Classical event driven simulation

* Physical models

Channel models
User behavior
Raytracing

» Algorithms

© 2008 Universitat Stuttgart e IKR

Optimization: LP, ILP, GA, SA, ...
Graph algorithms: routing, coloring

Machine learning: classification,
pattern recognition

Signal processing

Batch parallelization
New simulation paradigms

SIMD
Job Offloading

Cell Processor
NVIDIA CUDA
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Conclusion

Parallelization methods

SIMD

Limited performance (max. 2 .. 4) gain, vectorization required

Fine Grained Parallelism

New paradigm required, complete rewrite of existing code

Task parallelism:

Only suitable for certain kinds of simulation, synchronization problem

Job Offloading

Suitable for certain problems as an add-on to unmodified simulation

Batch parallelism

Suitable, implemented in IKR-Simlib
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